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4. Dynamic data conditioning:
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We tackle the challenge of reservoir model conditioningto static

and dynamic data under uncertainty across multiple geological

concepts. We demonstrate a viable solution with Variational

Autoencoder based on Graph Convolutions (GVAE), that links the

reservoir property distribution with dynamic model response e b
through the latent space (LS) and provide the answers to the (prediction) ] . Poro/Perm
following questions: T ' _- :
1. Can GVAE reliably reproduce geology?
2. Can GVAE LS depict a variation of geological concepts? CONCLUSIONS

3. Can GVAE provide History Matching through the LS?
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GVAE:

Provides geologically realistic representation of reservoir
property distribution and can handle unstructured data
represented as graphs
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GVAE concept
Represents variation of reservoir realization across different

3. Static data conditioning: geological concepts by links the static model and its dynamic

Dataset: i & = response via the latent space.

single/double Reference ‘ GVAE generated

channel concepts . Conditionsproperty distribution to both static and dynamic
‘ data.

History Matching workflow |
. X
Ref model . Enablesreservoir model update to match to dynamic data via
° navigation with optimization through the LS.

Simulation Loss function =
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Production+Static+Realism

Loss Reference GAVE final :
Latent vector . Provides an ensemble of HM models
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