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Abstract

This research tackles the challenges faced in geological modelling under uncertainty to
flow profiling and history matching. Geological uncertainty encompasses various inter-
pretations that may be consistent with the available data. When it comes to modelling,
these interpretations necessitate different modelling approaches and configurations. As a
result, it becomes challenging to effectively define the space of models and their param-
eters, as the problem’s dimensionality constantly changes. To overcome this challenge,
the study proposes an innovative approach that involves parameterisation through implicit
low-dimensional hidden spaces.
The study recognises the need to consider uncertainty in geological scenarios, structural
uncertainty, and petrophysical dependencies. These factors play a crucial role in accurately
representing and predicting the behaviour of geological objects. The chosen methodology
is the Graph Variational Autoencoder approach, which allows for the parameterisation of
the prior set of geological representations while considering various uncertainty.
The main idea behind this approach is to utilise an Encoder to map the original prior set into
a latent space that implicitly describes the prior. The latent space and the Decoder act as
a generator that can search for realisations that meet specific requirements. This method-
ology enables the estimation of uncertainty in dynamic response and history matching,
enhancing the overall understanding of geological systems.
The study justifies and presents a transition to graph-based generative modelling. I will
show that geometric deep learning, in particular graph convolutions, is the most convenient
method to account for geological representations with generative models. This transition
is motivated by the need to handle non-Euclidean data types, specifically those lacking
a strict structure. This enables the consideration of the structural and spatial features of
the reservoir by moving away from the classical lattice representation. The transition ex-
pands the applicability of generative models to a broader range of geological objects and
enhances the realism of the generated representations, as conventional approaches have
limitations and cannot describe the complex structural features of reservoirs or irregular-
ities in flow behaviour.
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The study employs advanced analytics tools to gain a deeper understanding of the hidden
spaces within the generative models. These tools provide valuable insights into the internal
structure of hidden spaces, allowing for a more informed analysis of the generative models’
capabilities and limitations.
Moreover, the study introduces a geodesic metric for efficient navigation in high-dimensional
hidden spaces. This metric enables more effective exploration and interpolation within
the hidden space, resulting in a more predictable behaviour than the standard Euclidean
metric. The geodesic metric also serves as the foundation for controlling the geological re-
alism in the latent space, ensuring that the generated realisations maintain their geological
coherence.
To test the generative capabilities of a graph-based generative model, the study develops
three prior datasets of 3D geological objects, focusing on the uncertainty of geological
scenarios, structural uncertainty, and the semi-synthetic Brugge field dataset, which rep-
resents four different stratigraphic zones. These datasets serve as test cases to evaluate the
effectiveness and limitations of the proposed generative models.
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Chapter 1

Introduction

If I have seen further it is by standing on the
shoulders of Giants

Isaac Newton letter to Robert Hooke, 1675

In geoscience, scientific knowledge is driven by a fundamental objective – to uncover a
concise set of equations and parameters that can comprehensively describe the intricate
workings of nature and convert it into a theory. This knowledge holds a multitude of
complex interrelationships between various scientific domains and their interactions with
the physical world. However, the quest for simplicity in representation often conflates the
theory with the reality it represents, blurring the distinction between the two.
In our eagerness to understand the subject, we frequently try to relate the theory with
what is represented. This intellectual misstep hinders our comprehension and prevents us
from truly understanding the subject. In other words, if all we have is a theory, everything
becomes an object of study. This paradox can lead us to the point where the theory we are
using can distort our view of reality. To navigate this conceptual challenge, researchers in
geoscience must differentiate between theories, tools, abstractions, and concepts and the
phenomena they describe.
The same object of study can be examined through the prism of different theories, provid-
ing its own representation. In this regard, the researcher needs to integrate representations
from different theories into a unified framework to understand the real object of study bet-
ter. However, building such “bridges” between theories can lead to contradictions, while
excluding certain concepts can result in an excessive simplification of the inherent com-
plexity of Earth’s systems.
Consider, for instance, the concept of a geological object. It can be examined through var-
ious theories: sedimentology, lithology, petrophysics, geophysics, flow modelling, well-
test, data science, economics and so on. Each perspective offers a different representation
of the object, but which truly represents nature?
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These epistemological questions can have a profound impact on the field of geoscience. It
is crucial to recognise the limitations of our scientific methodologies and resist the temp-
tation to entirely replace an understanding of the full complexity of the object with purely
theoretical constructs. Instead, we must see the gaps as opportunities for further explo-
ration and allow our theories to remain representations, distinct from the complex realities
they seek to capture. Science can be viewed as a supplement to describe an object, as it
provides a specialised language and toolkit.
With its specialised language and toolkit, science can complement the project design pro-
cess by providing the necessary tools and knowledge to describe the object of study. Mak-
ing the right project design is a challenging high-impact problem and requires revisiting
throughout the reservoir’s lifetime. Multiple system elements, uncertainty interdependen-
cies, dynamic data, and multiple pursuing goals are updated along the reservoir life cycle,
subject to the decision’s consequences. Examples of such decisions include drilling a
new well, implementing hydraulic fracturing or shutting an existing one. Generally, every
project design has a sequence of interventions, which is assumed to maximise the expected
outcome and get new information.
Reservoir intervention decisions require understanding how a particular well would be-
have in the reservoir under uncertainty. Often, a lack or incomplete understanding of the
interaction between the well and the field or incomplete knowledge of the field leads to
unsatisfactory or sad results. At every stage of a field’s life (exploration, appraisal, early
production, late production, abandonment), it is necessary to consider uncertainty, the
complexity of a sequence of decisions to be made, multiple objectives and time compo-
nents. We can draw the general project design scheme in a Reinforcement Learning style,
where we try to maximise Rewards in time, taking some Actions under Objects in the
Environment and getting new information as a response, figure 1.1.
Uncertainty usually has a paramount impact on development decisions. For example, ig-
noring such features as muddy deposits around channel bodies, which dramatically affect
the vertical flow, leads to an overestimation of the recovery, as more oil would remain
trapped, and further interventions and drilling decision updates may be needed. There-
fore, an expert requires a reliable (with consideration to his aims) model of a reservoir
and its interaction with a well regarding uncertainty — the range of factors not known
explicitly to expect, figure 1.2.
In this case, modelling plays a crucial part in the project design. Geologists and engineers
develop a conceptual model of a field with their limited knowledge. Then, they try to
translate this mental concept into a digital model. The decisions and subsequent actions
are made based on conclusions drawn from such a model. Jay Wright Forrester, the father
of system dynamics, described a mental model as follows:
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Figure 1.1: Every time step, we should make an Action in respect of an Object to maximise the
Reward from Environment response and get a new State.

Figure 1.2: Schematic representation of well and channel-fill sand bodies interaction. On the left
picture, muddy deposits are omitted, which leads to flow overestimation and false decisions. On
the right, the reservoir model is presented in more detail, which led to a more pessimistic cash flow.
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“The image of the world around us, which we carry in our head, is just a
model. Nobody in his head imagines all the world, government, or country.
He has only selected concepts, and relationships between them, and uses those
to represent the real system.” (Forrester, 1971)

Modelling of natural systems is one of the major challenges in geology. Experts can mostly
describe particular tech object characteristics, such as well design, grade of steel, quality
of cement, x-mas tree and so on. So, there is not much uncertainty about it, and it can be
modelled quite determined in most cases, although many options are possible here, and
often those options would exclude each other. The steel grade of a well varies and depends
on the manufacturing process and bespoke design. On the other hand, specialists hold
only limited knowledge about an object, such as a field. That is why he is forced to model
its initial and current states due to the interaction with an object under uncertainty, with
some assumptions and simplifications. The main problem is the lack of data describing the
particular geological object. The principal understanding of the depositional processes can
help reduce the variety of cases. Still, the modelling is usually ill-posed – many solutions
to the problem can be found.
To better understand and characterise a reservoir, geoscientists create 3D geological mod-
els that incorporate various data and properties. However, these models can only capture a
limited level of complexity in nature. Based on these models, reservoir engineers use nu-
merical methods to simulate fluid flow through the reservoir. However, relying on a single
model to predict reservoir performance does not adequately account for the uncertainty in
the subsurface.
Furthermore, scientists frequently use simplified proxy geological modelling, which en-
tails the construction of a geological representation by focusing solely on the most cru-
cial reservoir characteristics. This approach diminishes the demand for computational
resources, which is particularly advantageous in the context of optimisation processes.
There are two main approaches Physics-Based (May et al., 2021; Ren et al., 2019) and
Data-Driven (Shuku et al., 2023; L. Zhang et al., 2023).
Ideally, a large ensemble of reservoir models would be used to analyse the impact of uncer-
tainty on fluid flow behaviour. However, due to time constraints and practical difficulties, a
representative subset of models is chosen for flow simulation. This often results in collaps-
ing the uncertainty into a single base case, which is not ideal as the predictive capabilities
of a single model are questionable (Ringrose et al., 2015).
This ensemble helps to understand possible well/reservoir interactions so optimal sce-
narios and decisions can be made. That is why it is essential to understand sources of
uncertainty and ways of their quantification.
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1.1. UNCERTAINTY

1.1 Uncertainty

There is no unique definition of uncertainty. It often depends on the application disci-
pline and modelling approach. Uncertainty refers to the lack of complete knowledge or
predictability about a particular object, event, or outcome.
There are three general sources of uncertainty (I. Goodfellow et al., 2016):

1. Inherent stochasticity of the system being modelled. The system is inherently vari-
able and unpredictable. In practical terms, no matter how much we study and under-
stand a natural system, we can not model with certainty or predict its future response.

2. Incomplete observability. Incomplete observability uncertainty refers to the uncer-
tainty that arises due to the inability to fully observe or measure all the variables or
states of a system. It occurs when certain aspects or components of the system can-
not be directly observed or measured, leading to an incomplete understanding of the
system’s behaviour. Incomplete observability uncertainty can arise from limitations
in measurement techniques, incomplete data collection, or other factors that prevent
a complete observation of the system.

3. Incomplete modelling. Incomplete modelling uncertainty refers to the uncertainty
that arises due to the lack of complete knowledge or understanding of all the vari-
ables and factors that influence a system’s behaviour. It occurs when the model
used to describe or predict the system cannot capture or account for all the relevant
variables, leading to an incomplete system representation. As a result, the system’s
behaviour may appear stochastic or unpredictable, even though it is fundamentally
deterministic. Incomplete modelling uncertainty can arise from limitations in data
availability, measurement errors, simplifications, assumptions made in the model,
or other sources of incomplete information about the system.

Caers (2011) in his book “Modelling Uncertainty in the Earth Sciences” pointed out five
sources of uncertainty which can be applicable to geoscience problems. Let’s try to con-
nect them with previous, more general classes:

1. Uncertainty of determining the type of geological object, which arises from the in-
terpretation of data, or either based on physical models, which, in turn, also have
uncertainty – class 1;

2. Uncertainty associated with the error or inaccuracy of measurements, or the pro-
cessing of measurements – class 2;

3. Uncertainty of interpreting raw data. Uncertainty regarding the fact that the process
of interpretation also requires the construction of some model — class 2;
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1.2. HOW TO MODEL UNCERTAINTY

4. Spatial uncertainty. Typically, the data either does not cover the entire modelled
volume, or the data resolution does not match the model resolution – class 3;

5. Uncertainty of the response, since geological uncertainty transitions into the uncer-
tainty of dynamic response – class 3.

A common approach in modelling under uncertainty considers explicit relative depen-
dencies of parameters. This approach initially has some drawbacks, such as ignorance
of implicit dependencies and simplification. Moreover, it is usually impossible to iden-
tify such implicit dependencies in case of multi-parametric problems. So, the additional
source of uncertainty should be noted:

6. Relative dependency: includes uncertainty in the dependency between reservoir
characteristics (geological parameters such as porosity/permeability), commonly
represented explicitly in models – class 3.

The two types of uncertainty are complementary — uncertainty in modelling concepts /
parameters and intrinsic uncertainty due to natural stochasticity / randomness.
The problem is that this may lead to over-determined / over-constrained models that ignore
some uncertainty. These dependencies may be far more complex and cannot be modelled
explicitly. For example, there is a common approach to model poro/perm dependency
through the logarithmic relationship, but this is far from reality and just a simplification.
First, this relationship is not as deterministic as it is usually modelled and can depend on
the connectivity of pores, tortuosity, lamination, etc. In other words, it is a function of the
shape of the capillary pore spaces and the degree to which pores are connected, but it is
too complex to model in field-scale models.

1.2 How to model uncertainty

It is often more feasible to employ a straightforward yet uncertain rule instead of a complex
yet certain one, even when the actual rule is deterministic and our modelling system can
handle a complex rule (I. Goodfellow et al., 2016).
Philip Ringrose and Mark Bentley, in the book “Reservoir Model Design” (Ringrose et al.,
2015) provide three approaches to modelling:

1. Best Guess – in which a single model is chosen as a base case – which actually does
not account for any uncertainty

2. Multiple Deterministic – which avoids making a single best guess or choosing a
preferred base-case model. This approach involves constructing a small number of
deterministic models, ideally reflecting the space of uncertainty
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1.2. HOW TO MODEL UNCERTAINTY

3. Multiple Stochastic (geostatistics realisations) – a large number of models are stochas-
tically built

These three cases do not cover uncertainty quantification (UQ) when models (deterministic
or stochastic) are inferred from data through inverse modelling, i.e. inferring parameter
values (for deterministic case) or the entire state variables fields (ensemble approach).
This usually involves Bayesian inference. However, this is often constrained to explicitly
determined parametric model definition, which is uncertainty in its own — class 1.
Each case has its advantages and disadvantages. While using multiple stochastic models
may seem like the best choice when dealing with uncertainty, these models are often based
on available data. They may make similar assumptions as a simple forecast but with added
ranges around the most likely prediction. However, the accuracy of the outcome may be
compromised by giving more weight to specific input data and relying on best guesses for
each variable. This can result in the most probable probabilistic outcome being close to
the initial best guess.
Another problem of modelling under uncertainty is finding a link between static and dy-
namic data in geology. The relationship between these two data types may not be easily
captured or represented empirically or analytically. Static data, such as seismic surveys,
well logs, and core interpretations, typically represent the spatial distribution of geological
features at a given point in space. On the other hand, dynamic data, such as production
profiles and well test analysis, capture temporal responses under well/reservoir interaction
and refer to some bulk integral volumes. Usually, a history matching (HM) process is
needed to define the link between those data types. It is a waterfall-like process where
the reservoir model is built with the static data, and after that, it is tuned to represent a
dynamic response.
These two data types have inherently different characteristics and may not have a di-
rect relationship. Dimension reduction techniques aim to reduce the complexity of high-
dimensional data by identifying the most important features or variables that explain most
data variability. However, in the case of static and dynamic geological data, it is challeng-
ing to determine which features or variables should be considered as crucial for capturing
the relationship between them.
Additionally, dimension reduction techniques may not adequately capture the temporal
aspect of dynamic data. While static data can be easily represented in a lower-dimensional
space, dynamic data often require additional dimensions to represent temporal variations
accurately. Ignoring the temporal aspect of dynamic data during dimension reduction can
lead to the loss of crucial information and potentially misleading results.
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1.3. WHAT MACHINE LEARNING IS OFFERING?

1.3 What Machine Learning is offering?

Recently, machine learning (ML) related approaches attract scientists’ interest in mod-
elling and reconstruction problems. Developed data science approaches mostly focused on
fundamental issues such as data heterogeneity, complex dependencies of physical parame-
ters, high dimensionality, non-Gaussianity, and non-linearity. The principal philosophy in
resolving such problems can be in implementing machine learning algorithms, which can
consider all available data, identify and use implicit dependencies of parameters omitted
by humans and combine them into a model. Neural networks perform a non-linear map-
ping between input and output. Non-linearity is crucial as it allows capturing complex
dependencies between parameters. That is why they should be used instead of simpler
(linear) models.
For the problem of modelling under uncertainty, ML algorithms can be divided into two
groups: parametric and non-parametric. Parametric models learn a function described by
a parameter vector whose size is finite and fixed before any data is observed. An algorithm
implementation provides a model of some object, event, or process in quite a determined
way by tuning weights, which stays constant after the learning process. Non-parametric
models have no such limitation; all available data is mapped into compressed latent space
(LS), which describes all variability and keeps implicit. This latent space can be con-
sidered a ‘cloud’ of a probabilistic representation of an uncertain object, environment, or
instance and can be used as a source for sampling under some conditions. Such class of
ML algorithms, usually named “Generative”, aim to create new instances which meet pre-
assigned requirements. In addition to this, there is a wide range of uncertain parameters,
which can be decreased by utilising dimensionality reduction techniques.
The ideal model would be an oracle with knowledge of the probability distribution gener-
ating the data we observe. However, even such a model would still encounter some errors
in many problems due to potential noise in the distribution (I. Goodfellow et al., 2016).
Even if nature is deterministic, the probability distribution is our convenient imaginary
statistical concept of how the truth may look with certain probability. Within such a prob-
abilistic concept, we can accommodate the observations and realisations of the random
process and evaluate each possible concept’s probability.
There are benefits of ML could be emphasised:

1. No over-constraining with assumptions – Assumptions are inevitable in every model
containing uncertainty. Generative class of ML algorithms may free an expert from
making solid assumptions about concepts and available data, providing additional
flexibility to the modelling process.

2. Additional realism – As mentioned earlier, the ‘reasonableness’ of the automated
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combination of variables is hard to verify. Therefore, ML may add some realism
to variable combinations, sequences, proportions and so on because it only “sees”
realistic representations during the learning process.

3. Avoid bias towards data and prior assumptions, which may not be correct – An-
choring is one of the drawbacks of geostatistics modelling, which the utilisation of
non-parametric approaches in ML can overcome.

4. ML approaches can find new data interpretations that are still consistent with the
domain.

Limitations of ML:
1. Data dependency – ML algorithms are data-dependent and very sensitive to features.

Therefore, the “garbage in – garbage out” principle is always valid. But it is not just
about having the data but learning the right things from it. So, if we deal with data
which is a product of some interpretations, it could be “bias in – bias out” (Michael
Pyrcz)

2. There is still unclear how to evaluate uncertainty through latent space mapping.
3. The “no free lunch theorem” there is no universal algorithm that can perform than

any other for any problem.
4. Interpretability – “black box” problem. Mostly based on correlation elicited from

that, which may not represent the causality.
In the context of geoscience, ML can help address the outlined issues by utilising machine
learning algorithms to analyse and model complex dependencies, data heterogeneity, and
high dimensionality. It can capture non-linear relationships between parameters, making
predictions and interpretations more accurate. ML also offers the advantage of flexibility,
as it does not heavily rely on assumptions and can find new interpretations in the data.
In summary, while making decisions without having all the necessary information is pos-
sible, it is crucial to acknowledge and account for the uncertainty involved. In subsurface
situations, where direct observations may be limited, decision-makers rely on predicted
quantities based on measured data and utilise techniques such as sensitivity analysis and
risk analysis to address uncertainty. Expert judgment and experience also play a signifi-
cant role in making decisions in such scenarios. It is worth noting that the dimensionality
of the parameter space describing the model is usually much larger than the dimension-
ality of the parameters that need to be predicted. Thus, generative neural networks are a
good candidate as a tool to reduce the dimensionality of the original space without losing
internal dependencies, which leads to more efficient solutions for the inverse prediction
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problem in conditions of non-uniqueness of solutions.

1.4 Challenges of geological modelling and thesis outline

Céline Scheidt (2018) outlines several areas where research is needed to develop optimal
solutions and best practices: fundamental sciences, development of predictive models,
data science, economic models and models of human behaviour. This thesis mainly pri-
oritises the second and third points.
Training generative models is a modern approach to building models that represent the
object of interest using the training data provided. However, as a relatively new approach to
geological modelling, it brings not only new perspectives, but also a number of challenges
that need to be addressed by the scientific community:

• How to leverage generative modelling in geology? Data science and generative
machine learning, among others, are successfully implemented in computer vision,
medicine, etc. How can we use this experience in geological modelling and history-
matching processes?

• How to account for the inner physics of a reservoir concerning uncertainty of a
different nature?

• How to define implicit dependencies between geological parameters or geological
parameters and dynamic response? Keeping every parameter in its realistic range is
not the same as keeping geological realism. In reality, most dependencies are not
linear; sometimes, we can’t find a reliable description. Ideally, a geologically reli-
able model should hold dependencies between parameters and dynamic response.

• How to change/update a model to fit the data without losing geological reliability? It
is a crucial problem for every model, which should be history-matched. If a model
history-matched but is not geological reliable, or geological reliable but does not
perform a historical dynamic response, we can’t rely on prediction. So, the tuning
process should cover both issues.

The thesis will walk through the modern advances of generative modelling in geosciences
to the specific method of realistic geological model update through the latent space of
Variational Autoencoder based on Graph Convolutions, which demonstrates the ability
to implicitly parameterise unstructured data into a latent space of reduced dimensionality
and provides ways to balance reservoir model conditioning to both static well and dynamic
production data.
The thesis is divided into eight chapters and structured as follows:
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Chapter 2: Review of recent advances in generative deep learning and problem state-
ment

Most decision-making approaches try to create an accurate model representation; here, we
explore techniques of replacing actual models with generated ones as it brings the most
uncertainty. I focus on the application related explicitly to reservoir geological modelling
with generative algorithms, such as Generative Adversarial Networks and Variational Au-
toencoders. I will close the chapter with the problem statement of how to utilise generative
machine learning through the concept of latent space that provides encoding of initial geo-
logical data into manifolds (latent spaces) of decreased dimensionality. This gives a way to
implicitly link the static and dynamic model response without parametrisation constraints
into a manifold to optimal HM and uncertainty quantification.
Chapter 3: Methodology starts with the concept that I laid down as the foundation for
reservoir modelling using generative methods of machine learning - specifically, graph
variational autoencoders, which will be used throughout the thesis. The second part of
the chapter is dedicated to methods for analysing latent spaces, which are necessary for
more efficient work with generators. Latent space is an effective representation of uncer-
tainty — learned from data. After reading this chapter, the reader should understand the
mathematical framework used in the work.
Chapter 4: Modelling uncertainty and datasets construction process. The process of
constructing training datasets will be described, including the inherent uncertainty and the
hypotheses tested through experiments on these datasets. Three large datasets of varying
complexity and geological settings were prepared during the work. In addition to describ-
ing standard approaches to dataset construction through workflows, the transformation of
lattice models into a graph representation, an adequate way of unstructured descriptions,
will be described for further machine learning model training.
Chapter 5: Graph Wasserstein Autoencoders and channelized synthetic case de-
scribes a basic training pipeline of a generative network and an optimisation process using
latent space and decoder for model history matching. Using a dataset that includes spatial
uncertainty, the generative capabilities of the trained network and the hidden space will be
tested and analysed. Then, the results of model performance will be presented. The chap-
ter also compares the generative capabilities of the newly introduced geomodelling graph
variational autoencoder and “classic” generators (namely Convolutional Neural Networks-
based variational autoencoder and Wasserstein autoencoder) used in earlier applications.
All three compared generators will be trained on the same synthetic dataset and with simi-
lar hyper-parameters, experimentally demonstrating the advantage of the graph-based ap-
proach.
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Chapter 6: Graph Wasserstein Autoencoders and fault synthetic case extends the ap-
plication of the newly designed generative network with graph convolution to consider
structural geological uncertainty. During the analysis of the hidden space, the first lim-
iting factor of the decoder’s generative capabilities, which directly affects the model HM
process, will be identified. Based on the results of this chapter, the first recommendations
for constructing a prior are provided.
Chapter 7: Graph Wasserstein Autoencoders for AHM Brugge case consolidates the
findings from the comparative studies in the earlier chapters and applies them to a full field
benchmark history-matching application — the Brugge case study. The chapter will begin
by justifying the effectiveness of using a family of generative models compared to a single
universal model. The results of a model history matching using a hybrid latent space and
a set of decoders will be shown. Additionally, the chapter will describe recommendations
for constructing a universal generator and factors that limit the construction of such a
generator.
Chapter 8: Conclusion and future work The last chapter of this thesis focuses on the
main findings and results developed, relating them to the overall aim of the thesis. It also
provides an outlook on future investigations and suggests potential improvements.
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Chapter 2

Review of recent advances in generative
deep learning and problem statement

The purpose of this work is to consider generative machine learning methods for solving
problems in the field of geoscience like UQ and HM. Therefore, the first part of this chap-
ter will present a literature review to provide a general understanding of the geostatistical
methods used in practice for reservoir modelling and identify their weaknesses and lim-
itations. The geomodelling UQ methods overview will describe the trends and highlight
the recent advances in machine learning.
Conclusions from the review will outline the main challenges to be tackled in the thesis. I
will describe how this thesis’s findings and methodology can help address the task of HM
and UQ.

2.1 Geostatistical approaches in reservoir modelling

Reservoir modelling aims to accurately represent the spatial variation of important geo-
logical properties, which can be influenced by various underlying phenomena such as sed-
imentological, diagenetic, or tectonic processes. Geostatistical methods simulate stochas-
tic realisations of reservoir properties in areas away from well locations, assuming certain
spatial correlation dependencies. However, this becomes more challenging when dealing
with high heterogeneity as the influence of non-linear, non-stationary property distribu-
tions increases. The heterogeneity and uncertainty of facies distributions with contrast
permeabilities significantly impact flow, as it is difficult to describe how geological prop-
erties change between observation locations.
The level of variability in natural spatial phenomena suggests that changes in properties
occur in an ordered or continuous manner, reflecting the continuous nature of the under-
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lying geological processes. According to Demyanov et al. (2018), there are three main
questions for geostatistics which should be answered:

• How to describe spatial continuity of porous media?
• What is the best function which can describe relationships of properties?
• How to account for the uncertainty in the spatial distribution of properties?

A mathematical description of porous media is necessary to represent geological prop-
erties and facilitate further flow simulation digitally. Several approaches are available to
model the spatial distribution of porous properties in a reservoir, and selecting a particular
approach determines how data and knowledge are integrated into the model, which affects
the flow. These approaches can be classified into three types:

• Variogram-based algorithms.
• Multi-point statistics (MPS), which is a training-image-based method. The model

is built using a representative image of the geological structures.
• Object-based approaches. The objects are defined by geometrical parameters (such

as width, height, and sinuosity) and object proportions that are used to create the
required geological scenario according to some placement rule.

2.1.1 Variogram-based algorithms

The family of variogram-based algorithms is presented by Direct Sequential Simulation
(DSS), Sequential Gaussian Simulation (SGS), Truncated Gaussian Simulation (TGS),
Sequential Indicator Simulation (SIS). Algorithms are based on the (co)kriging approach,
which was first developed by Danie Krige, who applied mathematical statistics to the spa-
tial evaluation of orebodies (Krige, 1951). The processes he developed were named after
him, becoming known in the industry as ‘kriging’. This is also a family of spatial statis-
tical models of propagating mean and variance away from known data points, i.e. wells.
Variogram-based models have a general assumption about a spatial process under consid-
eration, such as second-order stationarity and linearity.

NOTE: Second-order stationarity implies stationarity of the mean and covariance,
which means the similarity in spatial dependence with the distance across the whole
reservoir. In the case of stationarity, the distribution of properties in space is invari-
ant to space. This is an idealistic assumption rarely met in practice.
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Kriging

Kriging is a spatial statistical technique used to estimate the mean and variance of a spatial
distribution. In the context of reservoirs, it allows for the interpolation of property values
between wells by considering the spatial continuity, or variogram (Demyanov et al., 2018;
Pyrcz, 2014).
Different flavours of kriging can be used like Simple Kriging (W. Lee et al., 2011; Madani
et al., 2022; Matheron, 1963), Ordinary Kriging (Kumar et al., 2023; Matheron, 1963),
Universal Kriging (Cheng, 2013), Indicator Kriging (Demyanov et al., 2018; Journel,
1983; F. Liu et al., 2012), depending on the complexity of the problem and the relevant
assumptions. However, it is important to note that kriging can only estimate the mean and
variance to a certain extent and cannot fully capture the uncertainty in the reservoir, i.e. it
gives a single result, and all properties are always mean.
To address the uncertainty in reservoir properties, it is necessary to generate multiple real-
isations of reservoir models by sampling from the estimated statistical distributions. This
allows for considering various possible scenarios while maintaining the spatial correlation
in the reservoir properties.
The following subsections will briefly describe methods that utilise different spatial statis-
tics descriptions. Stochastic simulation and techniques like kriging help to capture and
quantify the uncertainty in reservoir properties, providing a more comprehensive under-
standing of the reservoir and aiding in decision-making processes.

Sequential Gaussian Simulation

Sequential Gaussian Simulation is a specific stochastic simulation method used in geo-
statistics for modelling spatially correlated variables (Demyanov et al., 2018; Pyrcz, 2014).
It is a popular technique for generating multiple realisations of reservoir models by sam-
pling from estimated statistical distributions.
SGS assumes that the simulated variable follows a multi-Gaussian distribution in every
location and is independent. It involves simulating values at unsampled locations sequen-
tially, one at a time, based on the values already simulated at neighbouring locations. The
spatial correlation structure derived from the available data guides the simulation process.
By simulating values sequentially and conditioning each simulation on previously sim-
ulated values, SGS preserves the spatial correlation structure of the data. It allows for
generating multiple realisations that honour the observed data while also capturing uncer-
tainty and providing insights into different possible scenarios.
SGS and its modifications are widely used in reservoir characterisation and modelling to
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address uncertainty in reservoir properties, such as porosity, permeability, and saturation
concerning normal-score transformation (Bai et al., 2022).

Truncated Gaussian Simulation

Truncated Gaussian Simulation is a variation of SGS that incorporates truncation limits
into the simulation process (Mariethoz et al., 2009). Truncation limits are thresholds that
restrict the range of values that can be simulated for a categorical variable, for example,
facies.
TGS involves modifying the simulation process to ensure the simulated values fall within
specified truncation limits. Hence, simulation results depend on truncation limits (Fachri
et al., 2013; Kyriakidis et al., 1999).

Pluri-Gaussian Simulation

The limitation of SGS and TGS is overcome by Pluri-Gaussian Simulation (Yarus et al.,
2012). Pluri-Gaussian simulation is a geostatistical method that allows for modelling mul-
tiple Gaussian distributions with different parameters. Unlike SGS, which assumes a sin-
gle Gaussian distribution throughout the simulation process, pluri-Gaussian simulation
recognises that different regions within a spatial domain may exhibit different statistical
characteristics.
In pluri-Gaussian simulation, the spatial domain is divided into subregions or zones, each
representing a distinct geological or geophysical unit with its own set of statistical param-
eters. These parameters typically include the Gaussian distribution’s mean, variance, and
spatial correlation structure within each zone.
Pluri-Gaussian simulation allows for representing complex geological or geophysical sce-
narios where different regions have distinct statistical characteristics. It is particularly
useful in situations with abrupt changes in spatial variability or where there is a need to
capture multiple geological units with different properties (Sebacher et al., 2017; Silva
et al., 2017).

Sequential Indicator Simulation

Sequential Indicator Simulation is a geostatistical simulation method commonly used to
model categorical or discrete binary variables (Demyanov et al., 2018; Pyrcz, 2014). Un-
like Gaussian-based simulation methods, SIS focuses on capturing the spatial patterns and
transitions between different categories or classes within a spatial domain.
In SIS, the spatial domain is divided into subregions or zones, similar to pluri-Gaussian
simulation, but in a non-parametric way. However, instead of modelling continuous vari-
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ables with Gaussian distributions, SIS models discrete variables with categorical indica-
tors. These indicators represent the presence or absence of a specific category or class
within each zone.
The simulation starts with an initial random assignment of indicator values within each
zone. Then, the indicator values are updated sequentially based on the conditioning data
and transition probabilities for each zone. This sequential updating process ensures that
the simulated indicators honour the observed data and capture the spatial patterns and
transitions between different categories.
Once all the indicator values have been simulated for each zone, they can be combined to
create a final simulated field representing the categorical variable of interest. This com-
bination can be done using various approaches, such as majority voting or weighted sum-
mation based on the proportion of each category in the overall domain.
SIS is particularly useful when the variable of interest exhibits distinct categories or classes
with sharp boundaries and spatial dependencies. It allows for creating simulated fields that
capture the complex spatial patterns and transitions between different categories, providing
a more realistic representation of the categorical variable (C.V. Deutsch, 2006). TGS can
also do that, but it assumes the fixed sequence of facies.

2.1.2 Object-based algorithms

Variogram-based techniques can replicate spatial continuity and the proportion of facies,
making them appropriate for conditioning various data types as they generate realisations
on a pixel-by-pixel basis. Nevertheless, the variogram only captures basic spatial corre-
lations, making it challenging for two-point statistics to reproduce complex connectivity
patterns like meandering channels. Consequently, simulated realisations may not accu-
rately capture the true connectivity, which controls the flow, in such cases.
In contrast, object-based algorithms distribute categorical variable values based on pre-
defined geometric shapes (C. Deutsch et al., 2002; Haque et al., 2018). The choice of
geometric shape is tailored to the geology being modelled and can capture complex and
realistic geological features. Spatial correlation is determined by the arrangement of these
shapes rather than the variogram. These shapes are placed stochastically within the mod-
elling region using a stochastic optimisation technique conditioned to the data like wells
or seismic.
Optimisation algorithms maximise or minimise the value of an Objective Function (OF)
based on data. In object modelling, the OF typically aims to minimise the error in model
properties, such as the proportions of different facies. Objects are added or removed itera-
tively over multiple steps until all conditioning criteria are met within an acceptable error.
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Object models can be conditional or unconditional to well data.
Uncertainty in the dimensions and proportions of facies bodies can be represented in object
modelling by sampling from distributions for object parameters. The geometric properties
of objects can vary within certain intervals, such as dimensions, proportions, orientations,
sinuosity, and amplitudes, to control their behaviour.
One of the main advantages of object-based algorithms is their interpretability, as the
choice of realistic object shapes reflects the nature of the modelled phenomenon. As a re-
sult, object-based models find extensive application in domains where pre-existing knowl-
edge of patterns is accessible.
However, there are some weaknesses to consider with object-based approaches (Demyanov
et al., 2018). The choice of shapes assumes knowledge of the pattern structure and is sub-
ject to uncertainty. The computational costs may increase when optimisation techniques
necessitate iterative adjustments of spatial patterns to fit the data. Data conditioning can
be challenging and numerically complex to achieve through iterative optimisation. Ad-
ditionally, conditioning object-based realisations to data from different scales require a
complex OF and increases computational requirements.

2.1.3 Multi-point statistics

Multi-point statistics (MPS) in geoscience refers to a set of techniques to model and sim-
ulate spatial patterns and structures based on the statistical relationships between multiple
data points. MPS goes beyond traditional two-point statistics, such as variograms, by
considering the relationships among multiple data points within a given neighbourhood
(Guardiano et al., 1993; Strebelle, 2002).
MPS algorithms use training images or patterns to capture geological features’ spatial
correlation and connectivity. These training images contain examples of the desired spatial
patterns and are used to guide the generation of simulated realisations. By analysing the
patterns and relationships in the training images, MPS algorithms can reproduce complex
geological structures and capture the heterogeneity and connectivity of different facies or
geological units.
The key idea behind MPS is that the probability distribution of a specific pattern occur-
ring at a given location is conditioned on the patterns observed in neighbouring locations.
This allows for generating realistic and geologically plausible models that honour local
and global spatial constraints. It is a powerful tool for capturing the complex spatial vari-
ability and connectivity of geological features, which is crucial for accurate and realistic
simulations in geoscience (Caers et al., 2023).

18



2.1. GEOSTATISTICAL APPROACHES IN RESERVOIR MODELLING

Like in the aforementioned geostatistical algorithms, the basic MPS algorithm performs
poorly with non-stationary data. Therefore, several modifications have been proposed that
either add a trend model (Straubhaar et al., 2011) or divide the modelled area to achieve
local stationarity (Strebelle, 2002). However, a drawback of MPS is that it does not of-
fer a convenient parameterisation, which can be problematic for certain geostatistical ap-
proaches that rely on parameter optimisation, such as the history matching. Furthermore,
when considering a prior model, it is important to note that MPS heavily relies on the
selection of a training image, which significantly impacts the outcome (Céline Scheidt,
2018).

2.1.4 Limitations of geostatistics

To conclude this section on standard geostatistics, let’s highlight the general limitations of
the presented algorithms:

• Stationarity assumption: Many geostatistical methods assume stationarity, which
means that the statistical properties of the data do not change over space. However,
many natural phenomena exhibit non-stationarity, where the statistical properties
vary across different regions or scales. This can lead to inaccuracies in the modelling
and prediction of spatial data.

• Geostatistics mainly operates within a predominantly linear framework. While there
are exceptions, most algorithms employed in geomodelling exhibit linear charac-
teristics. This holds true even in the context of multivariate conditioning within
methodologies such as Multiple-Point Statistics and Sequential Indicator Simula-
tion. The linear nature of these approaches limits geostatistical analyses and mod-
elling, bounding a foundation for understanding and predicting spatial relationships
within subsurface reservoirs.

• Lack of flexibility (linearity): Traditional geostatistical methods often rely on simple
parametric models, such as variograms or kriging, which may not adequately capture
the geological complexity of spatial patterns. This lack of flexibility can result in
poor representation of spatial variability and limited ability to handle complex data
structures.

• Current geostatistical approaches cannot perform under uncertainty in various geo-
logical scenarios.

• Data conditioning: Hard data conditioning allows no space for interpretational un-
certainty, e.g. petrophysical interpretation. Soft data conditioning is limited to linear
dependency on the aggregated probability attribute. In reality, many secondary soft
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information have different non-linear relations with the target property (e.g. seis-
mic).

• Data sparsity: Geostatistical methods require a sufficient number of data points to
estimate the model parameters accurately. However, in many cases, spatial data
are sparse, especially in remote or inaccessible areas. This can lead to unreliable
predictions and uncertainty estimates.

• Computational challenges: Geostatistical methods can be computationally inten-
sive, particularly when dealing with large datasets or complex models. The com-
putational burden can limit the application of these methods in practice or require
simplifications that may compromise the accuracy of the results.

• Assumption of Gaussianity: Many geostatistical methods assume that the underly-
ing data follows a Gaussian distribution. However, this assumption may not hold
for many real-world datasets, which often exhibit non-Gaussian or heavy-tailed dis-
tributions. Failing to account for non-Gaussianity can lead to biased estimates and
unreliable predictions.

• Lack of integration with other data sources: Geostatistical methods often focus
solely on the spatial component of the data and may not effectively incorporate ad-
ditional sources of information, such as remote sensing data or auxiliary variables.
Integrating multiple data sources can enhance prediction accuracy and provide more
robust uncertainty estimates.

• In the context of MPS, the lack of a convenient parameterisation means that it may
be challenging to directly incorporate MPS-generated patterns into history matching
workflows. The complex nature of MPS models and the absence of easily adjustable
parameters make it difficult to optimise the model’s performance against observed
data.

All this leads to the development of more flexible approaches which can deal with the
limitations above, such as machine learning techniques. They offer a powerful set of tools
for geostatistics, enabling improved data analysis, prediction, optimisation, and decision-
making in various geospatial applications.

2.2 Machine Learning approaches in reservoir modelling

This section introduces the generative machine learning (generative models) and their
widespread applications in geosciences and beyond. Thus, the first subsection introduces
general components of deep generative models.
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In just a few years, generative models have become a highly effective method for unsu-
pervised learning, enabling to learn various data distributions with great success. The
primary objective of generative models is to understand the actual data distribution from
the training set, allowing the generation of new data points with some degree of variation.
However, it is not always feasible to precisely learn data’s explicit or implicit distribu-
tion. Therefore, we strive to create a model distribution that closely resembles the actual
data distribution by utilising the capabilities of neural networks. Generative models have
shown promising results in various fields, including:

• Computer Vision: Variational Autoencoder (VAE) and Generative Adversarial Net-
work (GAN) have been used for tasks like image synthesis, image inpainting, and
image super-resolution.

• Natural Language Processing: Recurrent Neural Network (RNN) and Transformers
have been used for tasks like language translation, text generation, and sentiment
analysis.

• Recommender Systems: Generative models have been used for collaborative fil-
tering and personalised recommendation systems to reduce the dimensionality of
user-item interactions.

• Bioinformatics: To analyse genetic data, protein structure prediction, and drug dis-
covery.

• Finance: Generative models have been used in financial time series analysis, port-
folio optimisation, and risk management.

• Anomaly Detection: To detect anomalous patterns in various domains such as cy-
bersecurity, fraud detection, and network intrusion detection.

• Robotics: To robot motion planning, object recognition, and scene understanding.
These are just a few examples, and generative models have also found applications in many
other fields. Generative machine learning in geosciences refers to using machine learning
models and algorithms to generate new data that follows the statistical patterns and char-
acteristics of existing geoscientific data. It aims to learn the underlying distribution of the
data and generate new samples similar to the observed data. In the context of geosciences,
generative machine learning can be used for the following tasks:

• Data Augmentation. It can be trained on existing data to generate additional syn-
thetic samples that can be used to augment the training dataset. This helps improve
the performance and generalisation of other machine learning models.

• Simulation and modelling: To simulate realistic geoscientific data, such as geolog-
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ical formations, weather patterns, or ocean currents. These simulated datasets can
be valuable for testing hypotheses, conducting sensitivity analyses, or generating
scenarios for decision-making.

• Uncertainty quantification: To estimate the uncertainty associated with geoscientific
predictions. By generating multiple plausible samples from the learned distribution,
it is possible to quantify the range of possible outcomes and assess the confidence
in the predictions.

• Data synthesis and completion: To fill in missing or incomplete data in geoscientific
datasets. By learning the statistical patterns of the available data, the model can
generate plausible values for the missing observations.

Generative methods prove advantageous over geostatistical approaches in addressing ge-
ological uncertainty within the history matching frameworks due to their ability to cap-
ture complex, non-linear relationships between input parameters and observed production
data. Unlike geostatistical methods that often assume deterministic relationships, gen-
erative methods operate within a probabilistic framework, providing multiple plausible
scenarios. This is vital in history matching, where the challenge lies in finding a model
that fits observed data and accounts for the inherent uncertainty in geological parameters.
The pivotal strength of generative models lies in their ability to produce diverse and re-
alistic scenarios, encapsulating the spectrum of potential outcomes. This contrasts con-
ventional methods like Convolutional Neural Networks and Support Vector Machines, as
generative models inherently operate within a probabilistic framework. This probabilistic
nature facilitates the generation of varied scenarios and the quantification of associated un-
certainty for each scenario. Furthermore, the probabilistic framework of generative meth-
ods enhances decision-making processes by providing insights into potential outcomes
and their respective uncertainty.
The family of generative machine learning techniques includes Generative Adversarial
Networks, Variational Autoencoders, flow-based deep generative models and diffusion
models. Due to its recent appearance, the last two are not represented in geosciences yet.
These models learn the underlying distribution of the data and generate new samples by
sampling from this learned distribution. Specific examples of generative learning meth-
ods in geostatistics and geological modelling will be discussed in Section 2.3: Recent
advances of generative modelling in geoscience.

2.2.1 Generative Adversarial Network

Generative Adversarial Network (I.J. Goodfellow et al., 2014) has demonstrated impres-
sive results in generating realistic content such as images, language, and music (Engel et
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al., 2019; Karras et al., 2021; Zhu et al., 2019). It is inspired by game theory, where two
models, a generator and a discriminator, compete and improve each other simultaneously.
A GAN consists of two models: a generator 𝐺 and a discriminator 𝐷. The discriminator
estimates the probability of a given sample 𝑥 ∈ 𝑋 being real or fake, while the generator
produces synthetic samples 𝑥 based on noise input 𝑧 ∈ 𝑍. The goal of the generator is to
create samples that are as realistic as possible, fooling the discriminator.
During training, the generator and the discriminator are engaged in a competitive game.
The generator aims to deceive the discriminator, while the discriminator strives to distin-
guish real from fake samples accurately. This dynamic motivates both models to improve
their performance, figure 2.1.

Figure 2.1: Architecture of a GAN. A generator 𝐺 outputs synthetic samples given a noise vari-
able 𝑧 input. A discriminator 𝐷 estimates the probability of a given sample coming from the real
dataset

The training process involves optimising a loss function that consists of two components.
The first components maximise the ability of the discriminator to sort fake objects from
real by maximising 𝔼𝑋∼𝑃𝑟𝑒𝑎𝑙(𝑋)

[

𝑙𝑜𝑔𝐷(𝑋)
]. At the same, time discriminator is expected to

provide a probability𝐷(𝐺(𝑍)) as close as possible to zero, hence maximising𝔼𝑋∼𝑃𝑓𝑎𝑘𝑒(𝑋)
[

𝑙𝑜𝑔(1−
𝐷(𝐺(𝑍))

]. The generator is trained to minimise the same component 𝔼𝑋∼𝑃𝑓𝑎𝑘𝑒(𝑋)
[

𝑙𝑜𝑔(1 −
𝐷(𝐺(𝑍))

] to prove high probability fake objects which are resembling real objects. Com-
bining two components, the loss function of GAN is as follows:

𝑚𝑖𝑛
𝐺
𝑚𝑎𝑥
𝐷
𝐿(𝐷,𝐺) = 𝔼𝑋∼𝑃𝑟𝑒𝑎𝑙(𝑋)

[

𝑙𝑜𝑔𝐷(𝑋)
]

+ 𝔼𝑋∼𝑃𝑓𝑎𝑘𝑒(𝑋)
[

𝑙𝑜𝑔(1 −𝐷(𝐺(𝑍))
] (2.1)

Despite its success in generating realistic objects, the training process can be slow and un-
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stable. Salimans et al. (2016) discussed issues with GAN’s gradient descent-based training
procedure. The independent updates of the generator and discriminator can hinder con-
vergence.
When the discriminator is perfect, the loss function becomes zero, resulting in no gra-
dient for further learning. This creates a dilemma in GAN training: if the discriminator
performs poorly, the generator lacks accurate feedback, and if the discriminator performs
well, learning becomes slow or stagnant (Arjovsky et al., 2017).
Another common problem in GAN training is mode collapse, where the generator pro-
duces limited and repetitive outputs. This hinders the generator from capturing the com-
plexity of real-world data distribution (Arjovsky et al., 2017). It should be mentioned
that even in trained GAN (Mosser et al., 2017b) indicates less variation in the generated
samples than in the training samples, which decreases further uncertainty quantification.
Several modifications to the vanilla GAN have been proposed to address these challenges
to enhance its performance (Arjovsky et al., 2017; Karras et al., 2018; Salimans et al.,
2016).

2.2.2 Variational Autoencoder

Autoencoder

I will start with a general concept of Autoencoder (AE), developed to reconstruct high-
dimensional data using a neural network model with a narrow bottleneck layer in the mid-
dle. The autoencoder was initially introduced by Kramer (1991) as a Nonlinear Principal
Components Analysis (NLPCA), an extension of Principal Components Analysis (PCA).
The NLPCA method is used to identify and eliminate non-linear correlations in data, as
opposed to PCA. Similar to principal component analysis, it can be used to reduce the
dimensionality of the data by removing redundant information. It was stated that the ap-
proach can effectively eliminate non-linear correlations in the data by utilising basis func-
tions that accurately model any bounded continuous function. The NLPCA methodology
involves training a neural network with a bottleneck layer to perform the identity mapping.
The network incorporates three hidden layers into the architecture to achieve non-linear
fitting. So we can see an early idea of a modern VAEs.
AE has also been referred to as the auto-associator (DeMers et al., 1992; Japkowicz et al.,
2000; Oja, 1991), and its earliest applications can be traced back to the 1980s (Rumelhart
et al., 1986). While its traditional use was for dimensionality reduction or feature learning,
it has become widely employed for learning generative data models through VAE (Cetin
et al., 2023; Pham et al., 2022).
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One beneficial outcome of AE is dimension reduction, where the bottleneck layer cap-
tures a latent encoding of decreased dimensionality. The latent encoding can serve multi-
ple purposes, including facilitating search operations, assisting in compressing data, and
unveiling the latent factors responsible for generating the data.
AE consists of two networks: an Encoder 𝑄 parameterised by 𝜙 and a Decoder 𝑃 param-
eterised by 𝜃. The low-dimensional vector learned for input 𝑥 in the bottleneck layer is
denoted as 𝑧, and the reconstructed input is denoted as �̂�.
The parameters 𝜙 and 𝜃 are optimised to produce a reconstructed data sample �̂� that
matches the original input 𝑥. Different measures can be used to assess the difference
between two vectors, including cross-entropy or MSE.
The encoder network effectively achieves dimensionality reduction, similar to PCA. Addi-
tionally, the autoencoder is explicitly optimised for reconstructing the data from the vector
𝑧.

Variational Autoencoder

The concept of AE was further developed by Kingma et al. (2022). The structure of the
VAE resembles an AE, where instead of mapping the input 𝑥 to a fixed vector 𝑧, it is
mapped to a distribution labelled as 𝑃 (𝑍), parameterised by 𝜃. The input data 𝑥 and the
latent vector 𝑧 can be fully defined by the prior 𝑃 (𝑍), the likelihood 𝑃 (𝑋|𝑍), and the
posterior 𝑄(𝑍|𝑋) parameterised by 𝜙.
The conditional probability 𝑃 (𝑋|𝑍) defines a generative model, similar to the decoder
mentioned in the AE section. The approximation function 𝑄(𝑍|𝑋) parameterised by 𝜙 is
the probabilistic Encoder, figure 2.2.
The loss function of the VAE consists of two terms: the negative log-likelihood with a
regulariser. Since we don’t know the global representations shared by all data points, the
loss function can be broken down into terms that only rely on individual data points. The
total loss is the sum of individual losses (equation 2.2) for each data point.

𝐿𝑜𝑠𝑠𝑖(𝜃, 𝜙) = −𝔼𝑄𝜃(𝑧|𝑥)
[

𝑙𝑜𝑔𝑃𝜙(𝑥|𝑧)
]

+𝐾𝐿
[

𝑄𝜃(𝑧|𝑥)||𝑃 (𝑧)
] (2.2)

The first component (reconstruction loss) evaluates how well the decoder reconstructs
the data for each data point. If the reconstruction is poor, it indicates that the decoder’s
likelihood distribution does not assign much probability to the true data, resulting in a high
cost in the loss function.
The regulariser term, on the other hand, measures the Kullback-Leibler (KL) divergence
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between the encoder’s distribution and 𝑃 (𝑧), which is usually a standard Normal distribu-
tion with mean zero and variance one. This divergence quantifies the amount of informa-
tion lost when using the encoder’s distribution to represent the data. It serves as a measure
of how close the encoder’s distribution is to the standard Normal distribution.

Figure 2.2: Architecture of VAE model with the multivariate Gaussian assumption. An Encoder
𝑄(𝑍|𝑋) converts the initial object into a latent vector representation 𝑧 . Decoder 𝑃 (𝑋|𝑍)

transforms the latent vector back into the initial object. If the Decoder and Encoder are properly
trained, the restored object should be similar to the initial

To train the VAE, gradient descent is used to optimise the loss by adjusting the parameters
of both the Encoder and Decoder (𝜃 and 𝜙).
Some limitations of VAEs include difficulty capturing complex data distributions. VAEs
assume that the data distribution can be approximated by a simple Gaussian distribution.
This assumption may not hold for complex and multimodal data distributions, leading
to sub-optimal reconstructions. VAEs tend to produce blurry reconstructions, especially
when dealing with high-resolution images. This blurriness is due to the smoothness as-
sumption made by the VAE’s decoder, which can lead to loss of fine details. VAEs are
sensitive to the choice of hyperparameters, such as the dimensionality of the latent space.
While VAEs can learn a low-dimensional representation of the data, it may not always
disentangle the underlying factors of variation. This means that different dimensions in
the latent space may not correspond to separate and interpretable features of the data.
There is a family of VAE modifications, presented by Gregor et al. (2019), Higgins et
al. (2017), Oord et al. (2018), and Tolstikhin et al. (2017) to overcome mentioned VAE
limitations.

2.2.3 Flow-Based generative model

A flow-based generative model is a type of model that is constructed using a sequence
of invertible transformations (Rezende et al., 2016). Unlike other models like GAN and
VAE, this model explicitly learns the data distribution and uses the negative log-likelihood
as the loss function.
In deep learning models, the embedded probability distribution (posterior 𝑃 (𝑍|𝑋)) must
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be simple enough to calculate derivatives efficiently for backpropagation. This is why
Gaussian distributions are often used in latent variable generative models, even though
real-world distributions are more complex, figure 2.3.
A Normalizing Flow (NF) model is introduced to address this limitation. Based on the
change of variables theorem, NF transforms a simple distribution into a complex one by
applying a sequence of invertible transformations (Kaplan, 2002). The model can obtain
a probability distribution of the final target variable by flowing through these transforma-
tions.

NOTE: A change of variables is a mathematical technique used to simplify problems
by replacing the original variables with functions of other variables. The purpose
is to make the problem easier to solve or to transform it into a problem that is better
understood.

Figure 2.3: Illustration of a Normalizing Flow model, transforming a simple distribution 𝑧0 to a
complex one 𝑥 step by step by 𝑃𝑖(𝑧𝑖−1)

The connection between every successive pair of variables in the probability density func-
tion sequence is determined. The equation of the output 𝑥 can be expanded step by step
until tracing back to the initial distribution 𝑧0. This chain of successive distributions is
called a NF.
For the computation of the equation, the transformation function must possess two es-
sential properties: it should be invertible, and the calculation of its Jacobian determinant
should be computable in a manageable amount of time.
With NFs, the exact log-likelihood of input data becomes tractable, making the train-
ing criterion of flow-based generative models simply the negative log-likelihood over the
training dataset (equation 2.3).

𝐿𝑜𝑠𝑠 = − 1
|𝑋|

∑

𝑥∈𝑋
𝑙𝑜𝑔

(

𝑃 (𝑥)
) (2.3)

In Variational Autoencoders, if we want to model the posterior𝑄(𝑍|𝑋) as a more complex
distribution than a simple Gaussian, we can use NFs to transform the Gaussian enhancing
the accuracy of density approximation (Su et al., 2018). The Encoder then predicts scale
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and shift terms that are functions of the input.
Like any other generative model, the flow-based model has its limitations. Training flow-
based models can be computationally expensive, especially for high-dimensional data.
This is because the model needs to invert the transformation from the data space to the
latent space during training, which requires calculating the determinant of the Jacobian
matrix. As the dimensionality of the data increases, this calculation becomes more time-
consuming. Flow-based models typically assume a simple latent space structure, such as a
Gaussian distribution. This assumption can limit their ability to capture complex and mul-
timodal data distributions. In cases where the true data distribution deviates significantly
from the assumed latent distribution, flow-based models may struggle to generate realistic
samples. Flow-based models require storing the entire dataset during training to compute
the Jacobian determinant. This can be memory-intensive, especially for large datasets.
Additionally, as the model complexity increases, the memory requirements also increase,
making it challenging to scale flow-based models to handle big data problems. Like other
generative models, it can suffer from mode collapse, failing to capture all modes in the
data distribution. This means that the generated samples may lack diversity and exhibit
repetitive patterns. Flow-based models are primarily designed for continuous data and
may struggle to efficiently handle discrete or categorical data. Although some extensions
have been proposed to address discrete variables, they often involve additional complexity
and can still face challenges in capturing the full complexity of discrete data distributions.
There are many examples of flow-based models utilisation in data science (Dinh et al.,
2015; 2017; Kingma et al., 2018). However, it is worth noting that the technology is not
widely used to solving geostatistics problems. Guan et al. (2021) presented flow-based
model for reconstructing porous media by training on 2D greyscale images to reconstruct
3D representations. Therefore, I will not consider flow-based generative models further,
as there are not enough examples of successful use.

2.2.4 Diffusion Models

Diffusion models are influenced by non-equilibrium thermodynamics and are based on
a Markov chain of diffusion steps. These steps gradually add random noise to the data
and then learn to reverse the diffusion process, ultimately generating desired data samples
from the noise (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2020). Diffusion
models follow a fixed procedure and have the same latent variable dimensionality as the
original data, as opposed to VAE or flow models.
To explain the forward diffusion process, let’s consider a data point 𝑥0 ∈ 𝑋, where 𝑋 is
some real data distribution. We add a small amount of Gaussian noise in 𝑆 steps, resulting
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in a sequence of noisy samples 𝑥1, ..., 𝑥𝑆 . The variance schedule {𝛽𝑠 ∈ (0, 1)}𝑆𝑠=1 controls
the step sizes during this process.

𝑄(𝑥𝑠|𝑥𝑠−1) = 
(

𝑥𝑠;
√

1 − 𝛽𝑠𝑥𝑠−1, 𝛽𝑠
) (2.4)

𝑄(𝑥1∶𝑆|𝑥0) =
𝑆
∏

𝑠=1
𝑄(𝑥𝑠|𝑥𝑠−1) (2.5)

NOTE: If we add up two Gaussian distributions  (0; 𝜎2
1) and  (0; 𝜎2

2) we will
get  (0; 𝜎2

1 + 𝜎
2
2)

As the step size 𝑆 increases, the data sample 𝑥 gradually loses its distinguishable features.
Eventually, when 𝑆 is big, it is equivalent to an isotropic Gaussian distribution

Figure 2.4: Architecture of Diffusion model. A series of the Markov chain of forward diffusion
processes 𝑄(𝑥𝑠|𝑥𝑠−1) add a small amount of Gaussian noise for a previous object 𝑥. A reverse
series 𝑃 (𝑥𝑠−1|𝑥𝑠) transforms latent vector 𝑧 back into initial object 𝑥.

The main objective of training a diffusion model is to learn the reverse process. By travers-
ing backwards along this chain, we can generate new data, starting from a pure Gaussian
noise 𝑃 (𝑥𝑆) =  (𝑥𝑆 ; 0,), figure 2.4

𝑃 (𝑥0∶𝑆) = 𝑃 (𝑥𝑆)
𝑆
∏

𝑠=1
𝑃 (𝑥𝑠|𝑥𝑠−1) (2.6)

The training of a Diffusion Model involves finding the reverse Markov transitions that
maximise the likelihood of the training data. This is achieved by minimising the variational
upper bound on the negative log-likelihood.

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝔼𝑄
[

− 𝑙𝑜𝑔
𝑃 (𝑥0∶𝑆)
𝑄(𝑥1∶𝑆|𝑥0)

]

≥ 𝔼
[

− 𝑙𝑜𝑔(𝑃 (𝑥0)
] (2.7)

We are particularly interested in formulating the 𝐿𝑡𝑜𝑡𝑎𝑙 in terms of KL divergences be-
cause the transition distributions in our Markov chain are Gaussians. It has been shown
by Sohl-Dickstein et al. (2015) that 𝐿𝑡𝑜𝑡𝑎𝑙 can be rewritten almost entirely regarding KL
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divergences.

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿0 + 𝐿1 + ... + 𝐿𝑆 (2.8)
𝐿0 = −𝑙𝑜𝑔𝑃 (𝑥0|𝑥1) (2.9)

𝐿𝑠−1 = 𝐾𝐿
(

𝑄(𝑥𝑠−1|𝑥𝑠, 𝑥0)||𝑃 (𝑥𝑠−1|𝑥𝑠)
) (2.10)

𝐿𝑆 = 𝐾𝐿
(

𝑄(𝑥𝑆|𝑥0)||𝑃 (𝑥𝑆)
) (2.11)

Diffusion generative models have limitations similar to flow-based, such as computational
complexity and memory requirements. It does not explicitly model latent variables. While
this can be advantageous in some scenarios, it can also limit the model’s ability to capture
complex dependencies and generate diverse samples. Diffusion models tend to struggle
to capture long-term dependencies in the data.
Various improvements were presented to overcome these limitations, such as Ho et al.
(2020), Nichol et al. (2021), Rombach et al. (2022), and Song et al. (2020).
As for geoscience, the first mentions of diffusion model utilisations were proposed by
Durall et al. (2023). Their study utilised diffusion models for three seismic applications:
demultiple, denoising, and interpolation. They conducted experiments on synthetic and
real data and compared the performance of diffusion models with established algorithms.
The problem was defined as an image-to-image transformation, where certain modifica-
tions were provided under an input image so that the output result belongs to the target
domain.
The second publication is also dated 2023 by Mosser (2023), where he investigated the
use of deep learning techniques for discrete indicator simulations, specifically focusing on
the newly developed order-agnostic diffusion models (Hoogeboom et al., 2022) for facies
modelling. However, one limitation of this approach is that it relies on an autoregres-
sive method, which involves a single forward pass by the U-Net and sampling from the
generated probability distribution for each grid block in the model.

2.3 Recent advances of generative modelling in geoscience

After a general description of the classical geostatistical algorithms and their drawbacks,
as well as various generative models, let’s examine examples of using generative models
to solve specific tasks in geological modelling.
As noted earlier, generative models can potentially improve the quality of reproducing
geological objects, considering their uncertainty. However, each type has its features,
which can be both advantageous and disadvantageous. Therefore, in the conclusion of
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this section, I will focus on one type of generative neural network, which will serve as the
basis for further practical research.
The Heriot-Watt University team has published several papers (Chan et al., 2018; 2019a,b),
that utilise Generative Adversarial Networks to generate geological representations. These
papers successfully capture initial conditioning under uncertainty. The GAN technique
trains a neural network to sample from an unknown and intractable distribution, using
only samples from that distribution. The result is a generator network that can generate
geological realisations with a number of latent parameters = 30. This approach preserves
the training data’s visual realism and flow statistics, accurately reproducing both geolog-
ical structures and flow properties. The team conducted numerical experiments using
conceptual images of channels of sand with constant permeability values embedded in a
clay background. They tested different conditioning scenarios, such as conditioning on
the presence of high permeability channels or low permeability background material in
specific locations within the domain.

Figure 2.5: Comparison between snesim (Y. Liu,
2006) and GAN-based approach. The left column
shows the sparse measurements of different fa-
cies. Left: 𝑚 - number of measurements. Middle:
samples generated by snesim. Right: samples
generated by the GAN-based. As opposed to the
GAN-based approach, snesim produces discon-
nected and unrealistic channels. From Dupont et
al. (2018).

Dupont et al. (2018) conducted a study on
utilising GANs in geomodelling, similar to
the research done by the Heriot-Watt Uni-
versity team. They proposed an approach
using deep generative models to generate
realistic geological models replicating geo-
logical patterns and accommodating phys-
ical measurements. The experiments in-
volved a training set of 5000 images of flu-
vial patterns, and the generated samples
met the constraints while being diverse and
of high quality. The samples exhibited a
range of channel widths and curvatures,
surpassing the current state of the art, fig-
ure 2.5.
The team from Imperial College London
conducted a study on utilising GANs to re-
construct micro-structures of porous media
(Mosser et al., 2017a,b). They created a
GAN model based on an oolitic Ketton limestone and showed that GANs can represent
the statistical and effective properties of segmented representations of the pore space. The
produced images successfully replicated the textural characteristics present in the original
training image. However, the generated samples had a reduced diversity compared to the
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training samples.
The team also solved the inverse problem of reservoir history matching using a deep gen-
erative model, specifically for a synthetic 2D channelised reservoir system (Mosser et al.,
2019). They provide an optimisation process in the latent space. The loss function was
considered: 𝐿(𝑧) = 𝐿𝑓𝑙𝑜𝑤(𝑧) +𝐿𝑤𝑒𝑙𝑙(𝑧) +𝐿𝑝𝑟𝑖𝑜𝑟(𝑧). Where 𝐿𝑤𝑒𝑙𝑙(𝑧) corresponds to the bi-
nary cross-entropy between the observed facies indicator, 𝐿𝑓𝑙𝑜𝑤(𝑧) is a difference between
the observed pressures and rates at the well locations averaged over the total duration 𝑇
of the observed data and 𝐿𝑝𝑟𝑖𝑜𝑟(𝑧) is a prior loss.
Studies by Laloy et al. (2018; 2017) attempted to reduce the complexity of an inverse prob-
lem with many unknowns using a Spatial Generative Adversarial Network (SGAN). They
trained the SGAN using binary channelised training images and were able to generate 2D
and 3D realisations quickly. The SGAN had a low-dimensional parameterisation, which
allowed for efficient probabilistic inversion using advanced Monte Carlo methods. The in-
version results for the 3D case closely matched the target data and visually resembled the
true model. The SGAN captured the training image patterns, although there were some
slight differences in broken channels and isolated patches. The statistics of the training
image were also well-matched by the SGAN.
Compared to their previous work with VAE (Laloy et al., 2017), the SGAN had several
advantages. It only required one training image, it was fully 3D, it could handle both binary
and multi-categorical data, each dimension of the latent space had a specific influence on
the high-dimensional domain, and it resulted in a more compact representation of the
domain with a significant dimensionality reduction.
Compared to existing geostatistical methods, the SGAN was advantageous because it gen-
erated model realisations that captured the statistics of the training image using a low-
dimensional representation of the original model domain.
The study by Sun et al. (2023) demonstrates that Generative Adversarial Networks have the
ability to learn and replicate complex meandering fluvial patterns generated by a process-
based model (Cojan et al., 2004) called FLUMY. FLUMY simulates various geological
processes to create realistic facies models with diverse and intricate geometries, such as
channel migration, avulsion, sediment deposition, and levee breach. This research ex-
plores whether deep generative models like GANs can accurately reproduce geological
patterns at the level of complexity achieved by process-based models. Incorporating geo-
logical knowledge, concepts, and interpretations into geo-modelling is a key objective of
extending GANs in facies modelling. A new variant of GAN, Fluvial GAN, has been de-
veloped, which can effectively replicate the 2D geometrical features of meandering fluvial
facies and capture facies transitions along the channel.
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A recent study by Fossum et al. (2024) has introduced an approach leveraging the condi-
tional Generative Adversarial Networks with Spatially Adaptive Denormalization (SPADE)
to establish an ensemble-based workflow that effectively captures complex geological pat-
terns. The Ensemble Randomized Maximum Likelihood method assimilates data into
an ensemble of coarse-scale maps, interpreted as the channel proportions, that serve as
SPADE-GAN input. This data assimilation conditions the ensemble of GAN-geomodels
to a combination of well data and flow data, thus improving pretrained SPADE-GANs.
The method’s capacity to replicate previously unseen geological configurations beyond
GAN’s training data has been convincingly demonstrated in numerical experiments.
Arauco et al. (2017) conducted a study on using Variational Autoencoders for parametrisa-
tion in geology. Using ensemble methods, they developed a robust parametrisation method
based on deep learning for history matching of facies models. The process involved train-
ing a deep learning network on prior facies realisations to identify the main features of the
images and construct a reduced parametrisation of the models. This parametrisation was
then transformed to follow a Gaussian distribution and updated using Ensemble Smoother
with Multiple Data Assimilation (ES-MDA) (Emerick, 2016) to account for observed data.
After each data assimilation, the deep learning network was used to reconstruct the facies
models based on the initial learning. The process was tested on a synthetic history match-
ing problem.
The results showed that the implementation of the VAE had great potential in the parametri-
sation problem, with well-defined channels observed in the posterior realisations. How-
ever, some “broken” channels were also observed. Overall, the final realisations preserved
the main geological characteristics of the prior models and had a good match with the ob-
served production data.
In further investigations by Arauco et al. (2021) and Smith et al. (2019), the authors used
deep neural networks to construct a continuous parameterisation of facies for data assim-
ilation with ensemble methods. They conditioned the VAE on facies data and production
data in 2D channelised cases. The posterior realisations showed reasonably well-preserved
geological characteristics of the prior models and a good match with the observed produc-
tion data.
However, in a 3D model with fluvial channels generated using object-based simulation,
the posterior model was distinguishable from the prior and reference models, with some
discontinuous channels and oddly shaped features. The authors attributed this lower per-
formance in the 3D case to the difficulty of training 3D convolutions and suggested that
larger training sets may be needed for 3D cases.
In another paper by Ahn et al. (2018), an alternative architecture of inverse modelling
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called Artificial Neuron Network — Stacked AutoEncoder (ANN-SAE) is presented. The
ANN-SAE workflow for data-driven inverse modelling is shown in figure 2.6. The per-
formance of ANN-SAE were tested for inverse problems under uncertainty of geological
scenarios. One such task was waterflooding, using a 2D geological model of a channel
reservoir as an example. Dynamic production data were generated using a black-oil sim-
ulator. Static data, in the form of grids of petrophysical properties, were obtained from
generated reservoir models and compressed using Stacked AutoEncoder (SAE). The study
analyses five cases with different numbers of hidden neurons (10, 30, 50, 100, and 300) in
Artificial Neuron Network (ANN) and compares them with ANN without SAE.

Figure 2.6: ANN-SAE based inverse mod-
elling approach for characterising a heteroge-
neous channel reservoir. From Ahn et al. (2018)

Finally, the study concludes that ANN-
SAE with unsupervised pre-training im-
proves static and dynamic data integra-
tion. It shows better performance in
terms of computation time and predictabil-
ity compared to the optimised ANN sys-
tem. The proposed workflow based on
ANN-SAE can investigate non-linear rela-
tionships among dynamic data and static
reservoir properties, providing geological
realism of the reservoir under investiga-
tion.
In a different study by K. Lee et al. (2018),
Variational Autoencoders were used in
a Distance-Based Clustering (DBC) ap-
proach to assess uncertainty in reservoir
models efficiently. The DBC method
grouped similar reservoir models based on
their performance. An uncertainty range estimation could be obtained without simulating
all models by simulating a representative model from each group. The key factor for the
success of DBC was the definition of distance, which measured the dissimilarity between
models. This research used a Stacked AutoEncoder to extract the main information from
a reservoir model. Instead of using the original vector (PIXEL), the feature vector of VAE
was used to compare the initial models and form clusters with similar models. It is impor-
tant to note that this method was tested on 2D synthetic channelised reservoirs with high
geological uncertainty. Two cases were presented: without observed dynamic data and
with observed dynamic data.
Jiang et al. (2021) propose the use of a Variational Autoencoder, for efficient parameter-
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ising aquifer properties in model calibration problems. These aquifer properties, such as
hydraulic conductivity, are spatially distributed and subject to uncertainty in geostatistical
models.
Convolutional auto-encoders demonstrate their effectiveness in tasks of non-linear param-
eterisation, such as the propagation of reservoir properties under uncertainty of geological
scenarios, which affect fluid flow. The obtained low-dimensional parameters represent
key patterns of property propagation essential for geological modelling. Numerical ex-
periments were conducted to showcase the robustness of convolutional neural networks in
tasks of low-dimensional parameterisation for subsequent model history matching. These
experiments consider various plausible geologic continuity models, demonstrating the ver-
satility and effectiveness of the proposed approach.
The following paper does not focus on alternative approaches to geological modelling.
However, it provides insights into how specific realisations can be identified for future
production planning and uncertainty quantification. Carneiro et al. (2018) introduce a
geostatistical-based multi-objective history matching methodology based on the Pareto
front.
The methodology begins by generating an initial ensemble of subsurface petrophysical
properties through stochastic sequential simulation. After fluid flow simulation, each
model is ranked based on its match with observed historical production data.
This method enables the generation of regionalised Pareto fronts and provides an ensemble
of optimal subsurface models. These models successfully reproduce all observed produc-
tion data while preserving the uncertainty space, figure 2.7.

Figure 2.7: Left: the ratio of non-dominated so-
lutions to total solutions generated up to a given
iteration. Right: the evolution of the number
of non-dominated models per iteration. From
Carneiro et al. (2018)

Unlike traditional approaches, this ap-
proach ranks all models in terms of Pareto
dominance for multiple objectives per in-
fluence area. It can also consider global
objectives, such as total liquid, water and
oil production. As observed in testing,
one limitation of this methodology is the
simplistic use of geostatistical modelling,
which relies on two-point spatial statistics.
Similar approaches to the history matching
problem have been presented by Maschio et al. (2008), who integrate geostatistical mod-
elling and history matching using genetic algorithms and direct search optimisation meth-
ods, and Chang et al. (2016), who propose an integrated workflow for updating facies
fields while preserving realistic geology and matching production data using the adaptive
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Gaussian mixture filter in data assimilation.
According to the research findings, some authors summarise the prospects for applying
generative networks to solve geostatistics problems. For example, Mosser et al. (2019)
concluded that GANs can solve this type of problem. Still, it is important to consider the
evaluation of the generated models in terms of quality, mode-collapse, and spatial statis-
tics representation. However, due to their challenging training and complex relationship
between latent and parameter space, GANs may not be the optimal choice for reparametri-
sation in ill-posed inverse problems.
Bao et al. (2022) provided an extensive comparison of GAN and VAE for identifying
geological structures using flow and transport data assimilation. The research findings
indicate that GAN has better-generating quality, reproducing channel structures with fewer
measured data. However, mode collapse may lead to underestimation of uncertainty. On
the other hand, VAE performs better in data assimilation, especially with more measured
data, allowing for better localisation of actual channels in the inverse problem. VAE also
accurately predicts flow and contaminant transport because its reconstructed structures are
close to the reference field. Both VAE and GAN face challenges with continuous variables,
but GAN’s training process is particularly unstable. In summary, GAN is superior for data
generation and produces higher-quality, more realistic images. However, when integrating
dynamic data into groundwater models, VAE outperforms GAN in terms of conductivity
generated by deep learning methods.
Thus, it can be concluded that despite the high generative capabilities of GANs, VAE
technology is more prioritised for tasks of model parameterisation under uncertainty and
optimisation through latent spaces, as it allows for direct work in the latent space, stable
to train and manage to cover all modes of the data distribution.

2.3.1 Structural Uncertainty in generative modelling

In many cases, grid-based models are constructed after generating structural models. How-
ever, it is important to perform joint inversion on both structural and property model
uncertainty. Ignoring their interaction can overlook their impact on physical / chemi-
cal responses studied, such as fluid flow models or geophysical models (Céline Scheidt,
2018). Although geoscientists recognise the significance of structural uncertainty in reser-
voir modelling, deterministic structural frameworks are typically used in simulation and
history-matching workflows. Due to the time-consuming nature of modifying the struc-
tural model and corresponding reservoir grid, it is often assumed that structural uncertainty
can be disregarded or only the worst, median, and best-case scenarios are considered for
simplicity. Most of the presented works are focused on solving the problem of modelling
reservoir property distribution. However, this is only one type of parameter that affects
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the dynamic response. The second family of parameters is structural uncertainty.
Faults play a crucial role in engineering operations. However, the location of faults is
uncertain due to various factors such as inaccurate geophysical imaging, imprecise repre-
sentation of vertical surfaces, limited well data, and subjective interpretation.
Computer modelling has advanced to address this uncertainty and allow for the digital
representation of complex fault surfaces. This evolution has enabled the incorporation
of geometric and topological perturbations in fault modelling. Efforts should be made to
develop efficient techniques for generating multiple fault models or perturbing existing
models, allowing for a more comprehensive assessment of uncertainty.
By addressing these issues, we can improve our understanding of fault networks and en-
hance the accuracy and reliability of engineering operations that rely on this knowledge.
The paper by Suzuki et al. (2008a) presents a workflow for history-matching reservoir
structures using production data while considering geological and geophysical constraints.
The process involves two main steps: first, modelling preliminary structural uncertainty
using geological and geophysical data, and second, calibration of reservoir geometry using
previously established structural models. The initial structural uncertainty is created by
introducing stochastic variations of horizons and faults and considering multiple structural
interpretations. The Assisted history matching (AHM) is then put into action. This ap-
proach minimises structural uncertainty from insufficient seismic quality by incorporating
well production data.
Numerous structural models are presented to capture prior structural uncertainty. Each
model gives rise to a population of structural variations, accounting for uncertainty in
horizon correlation. The uncertainty in the top horizon position is represented by adjust-
ing the top horizon of each stratigraphic grid. Additionally, the gross thickness of each
stratigraphic grid is perturbed through a continuous perturbation field, and perturbations
are introduced to the fault surfaces as well.
The prior set of structural models created represents a parameter space for HM. By in-
corporating this methodology, the authors aim to reduce uncertainty in fault networks and
improve the accuracy and reliability of engineering operations.
The paper by Seiler et al. (2010b) presents a reservoir characterisation workflow that con-
tinuously updates the structural reservoir model. To address the challenges associated
with structural-surface updating, the EnKF is utilised. The method involves creating an
ensemble of reservoir models to express the uncertainty of seismic interpretation and time-
to-depth conversion explicitly. The top and bottom reservoir-horizon uncertainty are con-
sidered as parameters for AHM, which is updated through sequential assimilation of pro-
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duction data. An elastic-grid approach is proposed to avoid grid modification challenges.
The method’s effectiveness is demonstrated through a synthetic example, which shows
promising outcomes. During the AHM process, a corner-point grid deformation is pro-
vided to reflect alternative structural realisations in the top and bottom reservoir horizons.
The adjustment of grid nodes is performed stepwise by updating corner points to match
the top and bottom horizons while keeping each other fixed. The algorithm can maintain
the original depth of perforated cells by adjusting the perturbation parameter to zero at
the corresponding grid nodes. The grid’s topology remains constant so that geological
properties can be populated without changing property vector dimensions. The authors
emphasise the importance of a prior ensemble that incorporates uncertainty and note that
no methodology currently exists that handles uncertainty related to faults. They also point
out difficulties caused by the framework of structure updating, like making sure the up-
dated surfaces follow horizontal well zones and match observed equilibrium regions.
The uncertainty associated with faults can significantly impact connected volumes, pro-
duction performances, and final recovery (Lescoffit et al., 2005). This uncertainty is
mainly due to poor seismic resolution and a noisy seismic signal around the faults. In
HM, the fault network is commonly fixed to a single interpretation, and the focus is on
estimating flow properties using fault transmissibility multipliers. To address this issue,
the authors propose an extension of the elastic grid algorithm to handle fault geometric
uncertainty in the reservoir model and HM workflow (Seiler et al., 2010a). The algorithm
updates the existing base-case grid’s pillar lines to reflect alternative fault positions and
assimilates production data using the EnKF to update fault position and throw. While
fault position may not be significant when the fault is not recognised as a flow barrier,
fault throw can impact fluid flow and overall field communication. Therefore, fault uncer-
tainty should be considered in addition to the horizon for a complete structural uncertainty
assessment of any reservoir.
The study by Hillier et al. (2021b) introduces an approach using graph neural networks
for generating three-dimensional structural geomodels. These models are important for
various scientific and societal purposes, but current implicit approaches have limitations in
handling complex structural settings. The proposed approach utilises unstructured meshes
as graphs to perform coupled implicit and discrete geological unit modelling. This allows
for incorporating interpolation constraints and simultaneous representation of continuous
and discrete properties. The effectiveness of the approach is demonstrated through two
case studies. However, a potential limitation is the reproducibility challenge due to the
random initialisation of the network’s parameters. In some cases, the resulting models may
differ significantly if the modelling capacity is insufficient or if there are multiple plausible
solutions given the constraints. Future research should focus on integrating additional
geological constraints into the modelling process.
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2.4 General workflow of AHM and UQ

In geological modelling, specialists encounter the challenge of uncertainty in geological
concepts or scenarios. Geological concept is a composition of attributes and dependencies
between them concerning spatial distribution. Geological concepts can be modelled by
various statistical algorithms that describe the spatial distribution of reservoir attributes or
characteristics. These statistical algorithms vary by the choice of governing equations and
their parameters. They also bear certain assumptions like linearity, Gaussianity, stationar-
ity, etc. It is necessary to identify all plausible configurations of the system’s architectures
to quantify the prior uncertainty in the model description of a conceptual geological sce-
nario and its variations. Subsequently, these configurations, deemed geologically feasible,
should be specified along with their frequencies in terms of probability density to capture
the uncertainty accurately. According to Céline Scheidt (2018), this density estimation
is usually made on data available and some prior expert knowledge. Figure 2.8 provides
an overview of the different combinations of assumptions in modelling. It visualises the
relationship between the data variables and the model.

Figure 2.8: Different scenarios of modelling concerning the general assumptions, which are made
to data ( , ) and model (∿): 1. Gaussian—Linear; 2. Gaussian—Linear in the vicinity of the
solution region; 3. Gaussian—non-Linear, 4. non-Gaussian—non-Linear

There are four distinct classes of combinations which can be identified:
1. The relationships between variables are linear and follow a Gaussian distribution,

e.g. kriging.
2. A model which can be approximated as linear (under certain conditions) in the vicin-

ity of a solution point, kriging would also meet this one.
3. A non-linear model, but Gaussian assumptions are made about the variables in-

volved, e.g. kriging with external drift or multiple facies cases.
4. A non-linear model where the modelling assumptions deviate from Gaussian char-

acteristics. The variables are not assumed to follow a Gaussian distribution. The
relationship between porosity and permeability can be largely non-linear, especially
in a multi-facie case.
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To quantify prior uncertainty effectively, it’s essential to describe a prior — all possible
system configurations and the probability density that characterises their likelihood of
occurrence.
Philip Ringrose and Mark Bentley describe in their book (Ringrose et al., 2015) three main
ways of accounting for uncertainty in the process of geological modelling and present them
as polar approaches, figure 2.9:

• best guess - this approach involves building a single base model, whose parameters
are varied within predetermined boundaries, to model uncertainty.

• multiple stochastic - involves building a set of models probabilistically using geo-
statistical algorithms.

• multiple deterministic - involves building several alternative models, usually fewer
than in multiple stochastic.

Figure 2.9: Approaches for accounting
for uncertainty in geological modelling.
From Ringrose et al. (2015)

Therefore, to encompass the entire space of uncer-
tainty, it is essential to construct multiple geological
models — an ensemble. This raises the question:
How many models are needed to describe the space
of uncertainty effectively? By effectiveness of de-
scription, I mean the minimum number of models
required to capture uncertainty. Is it the number of
models, or does their nature reflect diversity? For
instance, 100 SGS realisations will not cover the
uncertainty in total but only its fraction, which is
stochastic uncertainty in property distribution. Are
there tools that allow for parameterising geological models of different concepts? In other
words, is there a universal set of parameters that can describe various geological concepts
and be used as a universal set, i.e., a single space for finding solutions that meet specific
tasks? It’s worth noting once again that in addition to the uncertainty in geological con-
cepts, there is also uncertainty related to the petrophysical and structural parameters of the
model, thus significantly expanding the uncertainty space.
However, even if a geologist manages to construct an ensemble of geological models that
most comprehensively describe the geological representation, taking uncertainty into ac-
count, this ensemble needs to be calibrated to the production history (assuming such his-
tory is already available). The model calibration process is an inverse problem with multi-
ple solutions. To tackle inverse problems, it is necessary to assimilate data measurements
(log data, production data) with relevant prior states of information related to physical
objects. Typically, it is a time-consuming process that requires adjusting initial property
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fields, such as porosity or permeability, so that production parameters, as a result of sim-
ulations, closely match historical (real) measurements. At the same time, the geological
realism of the finally matched model should not be compromised and must be somehow
controlled.
Suppose we project the entire process from constructing a prior ensemble of geological
models to the final calibration of such a family to production history. In that case, we
have a highly labour-intensive process that demands significant computational and time
resources and is generally challenging to implement in real projects. The idea is that cur-
rent approaches to geological and simulation modelling are primarily based on sequential
steps, which is a limitation of the whole approach.
The issues above lead us to the concept of a hidden/latent space, which can be used as a
tool to describe various geological scenarios and other sources of uncertainty in a single
“encoded” parameter space. Furthermore, the dimensionality of this space can be much
smaller than the original. This generative models could be referred to 3𝑟𝑑 or even 4𝑡ℎ class
from figure 2.8, mainly because neural networks serve as non liner models with the inner
regularisation of Gaussianity of model’s parameters.

NOTE: An interesting and counterintuitive fact is that in high dimensions, Gaussian
distributions are practically indistinguishable from uniform distributions on the unit
sphere. Therefore, the process of sampling, distance measuring and so on in such
spaces becomes non-trivial. (Aggarwal et al., 2002). The only question that remains
is, what are high dimensions?

The parameterisation of a model through some reduced-dimensional spaces is not new.
Caers et al. (2008) presented an approach to quantify reservoir uncertainty by measuring
the distances between different reservoir model realisations rather than treating each real-
isation as a point in a complex high-dimensional space. This is achieved by constructing a
distance matrix that can be customised for specific problems, such as production profiling
or remaining reserves estimation, while keeping the realisations constant. The proposed
technique, metric EnKF, is also discussed as an application for updating multiple non-
Gaussian realisations using production data. The later research of Suzuki et al. (2008a)
introduced the distance metric of similarity of a model geometry. Jung et al. (2013) pro-
vided an UQ of complex DFN models with representative scenarios employing distance-
based clustering. To provide control of geological realism Kuznetsova (2016) explored
three different classifiers, such as k-means, Support Vector Machines and Random Forest,
while searching in a metric space for the HM. Demyanov et al. (2018) presented a workflow
that addresses the uncertainty of a conceptual geological model and measures its impact
on reservoir production profiling. The process employs adaptive stochastic sampling and
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Bayesian inference to estimate uncertainty from several HM models, each serving as a
solution to an inverse problem. This problem is addressed by sampling a unified space
of geological model parameters and reservoir model descriptions. This approach captures
uncertainty across diverse modelling concepts derived from multiple geological interpre-
tations.
For us, the latent space of a generative model can serve as a kind of source for geological
realisations, with the solution to the inverse problem being reduced to searching for regions
of the LS that meet the specified conditions. Essentially, the calibration process is reduced
to an optimisation problem in the parameter space of the generative model, which is the
latent space.

2.5 Research objectives

The literature review section showed that classical geostatistical modelling tools have sig-
nificant limitations that restrict their ability to model geological objects, considering mod-
ern needs, such as uncertainty quantification and the ability to effectively provide history
matching (solving the inverse problem).
Modern generative machine learning models are considered by the scientific community
as one of the promising directions for development, as indicated by numerous publications.
It is worth noting that most publications focus on the use of generative models to solve the
following types of problems: parameterisation of geological representations using latent
spaces of decreased dimensionality; finding implicit (non-linear) relationships between
parameters that determine the model; solving the inverse problem via latent space to search
for optima, considering various types of uncertainty more efficiently. Thus, I have outlined
the range of issues that researchers are currently addressing.
The choice of generative methods is appropriate to tackle the problem of inferring de-
terministic scenario uncertainty in the history matching problem because it can capture
complex relationships between input parameters and output responses. In the context of
history matching, this means that generative models can effectively link non-linear and
non-stationary relationships between uncertain input parameters and observed production
data. These methods can generate realistic and diverse scenarios that capture the range
of possible outcomes. Using generative models, researchers can explore different scenar-
ios and quantify the uncertainty associated with each scenario. This allows for a more
comprehensive understanding of the uncertainty in the HM problem and facilitates better
decision-making.
It should be noted that practically all the reviewed publications only consider a single type
of uncertainty: the uncertainty of the spatial or structural features. Oliver et al. (2011)

42



2.5. RESEARCH OBJECTIVES

emphasised that there is no universal approach to taking into account uncertainty; rather,
it depends on the object of consideration. It is evident that certain significant sources of
uncertainty still cannot be effectively managed. The most crucial issues are reservoirs
with complex geology. Current methods either oversimplify the spatial relationships of
facies or cannot consistently update properties. While initial progress has been made in
integrating uncertainty into the geometry of reservoir surfaces, complex faulting patterns
are currently beyond our capabilities. It is important to understand that the spatial distribu-
tion of properties is a key parameter controlling flow, but not the only one, e.g. structural,
fluids, etc.
Céline Scheidt (2018) emphasises that a reservoir model consists of both gridded (spa-
tial) and non-gridded components (fluid properties) parameters. The gridded component
includes the structural and stratigraphic model, which describes the location and geome-
try of bounding layers, horizons, and faults in the reservoir. Therefore, it is important to
consider various types of uncertainty in reservoir modelling, including reservoir charge,
reservoir structure, petrophysical properties, and reservoir fluid properties. In this regard,
generative machine learning methods are of particular interest, as the technology lever-
ages the notion of latent space, which can implicitly combine the listed parameters, taking
uncertainty into account. Such latent space is a convenient tool for UQ or Assisted history
matching process.
It is important to understand why the scientific community mainly focuses on approaches
considering uncertainty in property distribution (petrophysical properties). Still, structural
uncertainty (reservoir structure) is represented to a lesser extent. What technological lim-
itations currently exist. In addition to the stated research goals, the development of a tool
capable of combining geological and structural uncertainty to solve the inverse problem
is one of the distinguishing features of the thesis.
New technologies related to generative models also require new tools that can improve
calculation efficiency and convenience of analysis for the modeller. The construction of
geological models of a new type is based on parameterisation and tuning through hidden
representations, which are almost always not explicitly interpretable. Therefore, the devel-
opment of new analytical approaches is required. In my work, I describe and test a series
of ideas that can serve as tools for auxiliary analytics.
To be more specific, this work will focus on developing a generative machine learning
model that technically allows for the combination of various types of uncertainty, such
as uncertainty of geological concept and structural uncertainty, and generates 3D models.
The model should also allow for the calibration on production history without losing geo-
logical realism. Advanced analytics tools will also be presented, allowing for control and
analysis of the generative model’s performance.
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In summary, the objectives of the thesis may be stated as follows:
• Utilisation of generative machine learning methods to describe geological features

of different natures in a single parametric space and identification dependencies im-
plicitly

• Consideration the uncertainty of different geological scenarios in the process of his-
tory matching and uncertainty quantification

• Combination of depositional and structural uncertainty as single process of gener-
ating geological representations

• Development of tools for implicit control of geological realism through the latent
variables of a generative model

• Development of analytical tools for the efficient utilisation of generative models
The brief outline of the work follows this sequence:

• Methodological development and justification of VAE approach to parameterising
uncertainty of various geological natures (depositional, structural) through the con-
cept of a lower-dimensional latent space

• Introduction and justification of the Graph-Based approach as a more suitable method
for modelling volumetric geological objects, allowing for better capture of dynamic
characteristics of the geological model without compromising geological realism

• Definition of Three-Component Objective Function for AHM, aiming to achieve a
static well data match, dynamic data match, and geological realism constraint in the
latent space

• Development of tools to increase the efficiency of the generative model’s perfor-
mance and analysis

• Demonstration of advantages of the Graph-Based approach compared to conven-
tional VAE using a simple synthetic example

• Generalisation of methodologies and approaches for analysing the performance of
the generative network on synthetic examples and a full-field benchmark AHM
study.

In my work, I do not focus on computational power and calculation speed up because the
power changes so quickly that what seemed impossible to calculate five years ago is now
a common task, especially with the advent of quantum computing (Dukalski et al., 2023;
Mato et al., 2021; Sleeman et al., 2020). The primary focus of my work is the quality of
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reproducing objects from a geological and dynamic response perspective, as well as the
additional possibilities that arise when using the technologies described in the following
chapter.
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Chapter 3

Methodology

3.1 VAE description

This chapter describes the fundamental technologies that will be utilised in the subse-
quent chapters. I will begin with the mathematical formulation of the basic concept of a
Variational Autoencoder, highlighting its primary technological limitation and then tran-
sitioning to an enhanced version, the Wasserstein Autoencoder. Next, the graph version
of Wasserstein Autoencoder will be introduced, allowing for a more natural description
of geological objects and their inherent uncertainty, such as depositional and structural
uncertainty. To address the inverse problem, I will introduce the concept of an objective
function and an optimiser. The objective function in this work consists of three compo-
nents: the reproduction error of well-log data, production data, and geological realism.
The first two components are mathematically straightforward, defined by mean squared
error. In contrast, the geological realism error is represented using a latent space den-
sity metric, which, in turn, requires justification for the nonlinear structure of the latent
space. At the conclusion of the chapter, I will present several methods for analysing the
structure of multidimensional spaces, aiding in the evaluation of the generative model’s
performance. Ultimately, the reader should gain an understanding of the tools employed
in this work and the reasons behind their utilisation.
In geoscience, a real geological object can be considered to have infinite dimensionality
because it can be examined at various scales, ranging from macro (seismic) to micro (core)
scales, changes over time, and has uncertainty. However, its representation needs to be
discretised during its modelling regarding volume and time. But even in this case, the
dimensionality of the model is usually very high (Céline Scheidt, 2018).

𝑑𝑖𝑚(𝑔𝑒𝑜𝑚𝑜𝑑𝑒𝑙) = 𝑁𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 ⋅
(

𝑁𝑔𝑟𝑖𝑑𝑐𝑒𝑙𝑙𝑠 ⋅𝑁𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 + 𝑑𝑖𝑚(𝑝𝑟𝑜𝑝)
)

= 𝑛 (3.1)
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Where 𝑑𝑖𝑚(𝑝𝑟𝑜𝑝) — dimensionality of non-gridded model variables (e.g. PVT, relative
permeability).

NOTE: Here I denote some basic notation: calligraphic letters are used for sets - ;
capital letters for random variables - 𝐴; lower case letters for values - 𝑎

Each geological model is described using thousands or even millions of dimensions as a
gridded property distribution. In this regard, models are highly redundant due to the spa-
tial continuous nature of geology. This opens the room in modern geological modelling
to reduce the dimensionality of the space that describes the geological media. One poten-
tial solution to the problem of describing high-dimensional spaces is generative ML. The
Variational Autoencoder approach is considered, where the model can be represented as
a distribution 𝑃 (𝑋), defined over data 𝑋 in a space  of dimensionality 𝑛.
Suppose we have examples from the unknown distribution 𝑃𝑟𝑒𝑎𝑙, and our goal is to find a
probability distribution function (PDF) 𝑃 (𝑋), which is similar to 𝑃𝑟𝑒𝑎𝑙, 𝑃 (𝑋) ∼ 𝑃𝑟𝑒𝑎𝑙. In
other words, we want to find some distribution that will be as close as possible to nature.
We assume that our initial 𝑋, which we observe during exploration and subsequent inter-
pretation, “lives” in some manifold  (I will provide a comprehensive definition of this
term later). Dimensionality  much less than  (𝑚 ≪ 𝑛). Formally, we assume there is
a vector of latent variables 𝑍, which we can sample according to some 𝑃 (𝑍) to construct
𝑃 (𝑋) ∼ 𝑃𝑟𝑒𝑎𝑙.
We have a family of deterministic functions 𝑓 (𝑍; 𝜃), parameterised by 𝜃 in some space Θ,
where 𝑓 ∶  ∗ Θ →  . We want to find such 𝑓 by optimisation over 𝜃. In other words,
we want to maximise the probability of each 𝑋 in the training set (Doersch, 2021). Let’s
redefine 𝑓 (𝑍; 𝜃) by 𝑃 (𝑋|𝑍; 𝜃).

𝑃 (𝑋) = ∫ 𝑃 (𝑋|𝑍; 𝜃)𝑃 (𝑍)𝑑𝑍 (3.2)

𝑃 (𝑋) — probability distribution of model parameters 𝑋, usually unknown
𝑃 (𝑍) — probability distribution of some latent variables 𝑍, embedded into 𝑋
If we know 𝑃 (𝑋), we assume that we know the “real” process about an object, for example,
spatial arrangement of geological properties and structure. Hence, we should maximise
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𝑃 (𝑋) by optimisation over 𝜃. In VAE formulation, 𝑃 (𝑋|𝑍; 𝜃) is usually Gaussian.

𝑃 (𝑋; 𝜃) = ∫ 𝑃 (𝑋|𝑍; 𝜃)𝑃 (𝑍)𝑑𝑍

𝑃 (𝑋|𝑍; 𝜃) =  (𝑋|𝑓 (𝑍; 𝜃), 𝜎2𝐼)

𝑃 (𝑋; 𝜃) = ∫  (𝑋|𝑓 (𝑍; 𝜃), 𝜎2𝐼)𝑃 (𝑍)𝑑𝑍 ←←←←←→
𝜃
𝑚𝑎𝑥

(3.3)

Let’s define 𝑄(𝑍|𝑋) - Encoder, which maps  to . So 𝑄(𝑍|𝑋) is some artificial distri-
bution; 𝑃 (𝑍|𝑋) is a real and unknown distribution.
We aim to minimise the difference between 𝑃 (𝑍|𝑋) and 𝑄(𝑍|𝑋). In KL formulation
(Kullback et al., 1951), the difference between two distributions could be defined in the
following way:

𝐾𝐿
[

𝑄(𝑍|𝑋)||𝑃 (𝑍|𝑋)
]

= 𝔼
[

log𝑄(𝑍|𝑋) − log𝑃 (𝑍|𝑋)
] (3.4)

The equation 3.4 indicates similarity of 𝑄(𝑍|𝑋) and 𝑃 (𝑍|𝑋). If the metric’s value is
small, the distributions are similar.
However, as previously noted, the distribution 𝑃 (𝑍|𝑋) is unknown to us; therefore, we
must define it differently. For this, we will need the Bayesian formulation:

𝑃 (𝑍|𝑋) =
𝑃 (𝑋|𝑍) ⋅ 𝑃 (𝑍)

𝑃 (𝑋)
(3.5)

log𝑃 (𝑍|𝑋) = log𝑃 (𝑋|𝑍) + log𝑃 (𝑍) − log𝑃 (𝑋) (3.6)

Let’s define the equation 3.4 as follows:

𝐾𝐿
[

𝑄(𝑍|𝑋)||𝑃 (𝑍|𝑋)
]

= 𝔼
[

log𝑄(𝑍|𝑋) − log𝑃 (𝑋|𝑍) − log𝑃 (𝑍)
]

+ log𝑃 (𝑋)
(3.7)

𝐾𝐿
[

𝑄(𝑍|𝑋)||𝑃 (𝑍|𝑋)
]

= 𝐾𝐿
[

𝑄(𝑍|𝑋)||𝑃 (𝑍)
]

− 𝔼
[

log𝑃 (𝑋|𝑍)
]

+ log𝑃 (𝑋) (3.8)

log𝑃 (𝑋) −𝐾𝐿
[

𝑄(𝑍|𝑋)||𝑃 (𝑍|𝑋)
]

= 𝔼
[

log𝑃 (𝑋|𝑍)
]

−𝐾𝐿
[

𝑄(𝑍|𝑋)||𝑃 (𝑍)
] (3.9)

The equation 3.9 is a general formulation of VAE. Let’s have a deeper look at it. We want
to maximise the left-hand side because it reflects our beliefs about 𝑃 (𝑋) reconstruction,
which tells us about the nature of the object. Plus an error term, 𝐾𝐿[𝑄(𝑍|𝑋)||𝑃 (𝑍|𝑋)

]

which is the difference between Encoder 𝑄(𝑍|𝑋) and 𝑃 (𝑍|𝑋).
The right-hand side of equation 3.9 is called the (variational) lower bound. This is some-
thing we want to optimise via stochastic gradient descent:
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𝔼
[

log𝑃 (𝑋|𝑍)
] — reconstruction cost, i.e., quality of 𝑋 reconstruction from 𝑍, which

is our Decoder 𝑃 . So we pick 𝑧 from , and Decoder should reconstruct it to 𝑥 with a
minimum information loss.
𝐾𝐿

[

𝑄(𝑍|𝑋)||𝑃 (𝑍)
] — regulariser, penalised discrepancy between 𝑃 (𝑍) and distribu-

tion induced by the Encoder 𝑄.
The representation of the input data, 𝑋, is captured by the latent distribution. From this
distribution, the Decoder creates an output by selecting points 𝑧 through sampling. How-
ever, directly sampling these points introduces randomness, which is incompatible with
backpropagation, which depends on deterministic operations. Backpropagation requires
computing gradients of non-random operations. Hence, a method is needed to introduce
the required randomness for sampling while maintaining differentiability. This is where
the reparameterisation trick is employed. It functions by isolating the deterministic and
stochastic elements of the sampling process. This is achieved by defining 𝑧 = 𝜇 + 𝜎 ∗ 𝜖,
where 𝜖 provides the required randomness. Consequently, the 𝑧 is differentiable for back-
propagation.
The standard choice for𝑄(𝑍|𝑋) =  (𝑍|𝜇(𝑋; 𝜃), 𝜎(𝑋; 𝜃)), where 𝜇 and 𝜎 are determin-
istic functions with parameter 𝜃, that can be learned from data. 𝑃 (𝑍) is usually specified
as a standard Normal distribution 𝑃 (𝑍) =  (0, 𝐼). If the Encoder outputs representa-
tions 𝑍 different from those from a standard normal distribution, it will receive a penalty
in the loss. This regulariser keeps the LS  sufficiently normally distributed, providing
no ’holes’ in the LS , so we can sample every 𝑧, which were not seen before. Both 𝑄
and 𝑃 are parameterised by deep neural networks.
Variational Autoencoders can simultaneously encode and reconstruct / generate various
objects, are stable in training, and are generally not restricted to normal distribution. At
the same time, they can generate objects that differ significantly from the training dataset
if we sample regions of low probability in the latent space. This aspect will be further
examined in later chapters dedicated to studying the LS.
As a result, the Encoder and Decoder of the VAE can be used for geological modelling in
the following way. In the first stage, we train the Encoder to encode training samples𝑋 into
a representation 𝑍 in the latent space, which typically has a much lower dimensionality
than the original. Assuming that our training dataset has high variability and covers all
the uncertainty space, we can assume that our representation of the possible geological
conditions is complete, allowing us to reconstruct the geological representation of the
desired object considering the available information about it. In the second step, we need to
train the Decoder to reproduce the reverse process of reconstruction / generation according
to samples from the manifold . In reality, both the training processes of the Encoder and
Decoder occur simultaneously, figure 3.1.
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Figure 3.1: The training process of the Variational Autoencoder consists of two main components:
Training the Encoder𝑄(𝑍|𝑋), which converts the original training images𝑋 into a representation
of the LS 𝑍. And training the Decoder 𝑃 (𝑋|𝑍), which performs the reverse action of reconstruc-
tion from 𝑍 to the original representation 𝑋.

Putting equation 3.9 into geoscience formulation, we want to maximise our belief 𝑃 (𝑋),
which represents the "true" geological description of an object, by minimising the differ-
ence between the Encoder 𝑄(𝑍|𝑋), which can be interpreted as a model of unobservable
physical, chemical, biological, etc. processes 𝑍, and the "real" processes in the form of
𝑃 (𝑍). In other words, 𝑃 (𝑍) is a combination of unobservable processes that resulted in
the formation of the geological object 𝑃 (𝑋), figure 3.2.

Figure 3.2: In reality, many processes govern the formation of a geological object, such as physical,
chemical, biological, etc., which occur over time. The VAE replicates these processes through
hidden variables 𝑍 to reconstruct the geological object as accurately as possible based on the
available data.

To provide the object reconstruction process, we need to determine a Decoder for which
𝑍 is informative enough to reconstruct 𝑋 accurately.

3.2 From KL to Wasserstein Loss

During the optimisation process, VAE maximise a variational bound, which is composed
of the reconstruction cost 𝔼[ log𝑃 (𝑋|𝑍)

] and regulariser 𝐾𝐿[𝑄(𝑍|𝑋)||𝑃 (𝑍)
]. VAE

forces the 𝑄(𝑍|𝑋) to match 𝑃 (𝑍) for every sample 𝑥 from  , which is not guaranteeing
that the overall encoded distribution 𝑄(𝑍|𝑋) matches 𝑃 (𝑍). This problem leads us to
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the main drawback of VAE, such as the blurriness of the generated objects. If we sample
𝑧 from the intersection area of different encoded 𝑥’s in , then the Decoder reconstructs
blurry objects. This process is depicted in figure 3.3.

Figure 3.3: VAE forces 𝑄(𝑍|𝑋) to match 𝑃 (𝑍) (coloured regions in ) for every single input ( ,
, , ), drawn from 𝑃 (𝑋). Coloured regions in  starts to intersect, which leads to unreliable

reconstructions ( ) due to blurriness problem if the sample ( ) was picked from the region of
intersections.

In data analysis, probability measures are commonly compared using divergences such as
Euclidean, total variation, Hellinger, and Kullback-Leibler. These measures are used to
quantify fitting errors or losses in parameter estimation problems. Unlike other metrics,
Optimal Transport is based on a physical approach of mass displacement and geometry
to compare measures. Thus, using the Wasserstein metric, which is based on Optimal
Transport theory, as a loss function becomes very appealing (Peyré et al., 2018).
In this section, we will transform the regulariser to match the overall training distribution
and the prior distribution 𝑃 (𝑍). To achieve this, we need to incorporate Optimal Transport
(OT) theory into the generative approach. Optimal Transport provides a cost metric that
measures the similarity between probability distributions (Villani et al., 2003).

3.2.1 Optimal Transport basics

Let’s first put some intuition into the Optimal Transport metric. Assume we have a distri-
bution of geological properties, denoted as 𝑃 (𝑋 ∈ ). We want to move the mass of this
distribution to another “location” in the same space  and obtain 𝑃 (𝑌 ∈ ), i.e., generate
a geological object with similar properties.
OT is a geometry for measuring probability, initially developed by French mathematician
Monge in 1781. OT can be conceptually formulated as follows: what is the minimum
cost of moving a pile of sand to a different space with a predetermined shape? Later,
Kontorovich and Koopmans received the Nobel Prize for their work on the OT problem,
highlighting the significance of the theory for logistics and economics. Currently, OT
has evolved into a tool in mathematical analysis and machine learning as a metric for
comparing different distributions.
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To evaluate the cost of this transportation, we need to estimate 𝑐(𝑋, 𝑌 ) → [0,∞). 𝑐 gives
us an estimate of the cost of transporting 𝑃 (𝑋) to 𝑃 (𝑌 ). The transportation plan can be
described as 𝛾(𝑋, 𝑌 ), and the cost 𝑐 of this plan is minimised.
To provide that transportation, we need the following properties:

∫ 𝛾(𝑋, 𝑌 )𝑑𝑌 = 𝑃 (𝑋) (3.10)

∫ 𝛾(𝑋, 𝑌 )𝑑𝑋 = 𝑃 (𝑌 ) (3.11)

These equations tell us that the mass being transported from𝑋 should be equal to the total
mass at 𝑋, and the mass at 𝑌 should be transported to its final location. Therefore, the
total mass from 𝑋 being transported to 𝑌 is equal to 𝛾(𝑋, 𝑌 )𝑑𝑋𝑑𝑌 , and the cost of such
transportation is 𝑐(𝑋, 𝑌 )𝛾(𝑋, 𝑌 )𝑑𝑋𝑑𝑌 . The overall cost of transportation is determined
as follows:

∬ 𝑐(𝑋, 𝑌 )𝛾(𝑋, 𝑌 )𝑑𝑋𝑑𝑌 = ∫ 𝑐(𝑋, 𝑌 )𝑑𝛾(𝑋, 𝑌 ) (3.12)

The transportation plan 𝛾 ∈ Γ is not unique, so we need one, across all in Γ, with the
minimum cost

𝐶 = inf
𝛾∈Γ ∫ 𝑐(𝑋, 𝑌 )𝑑𝛾(𝑋, 𝑌 ) (3.13)

Now, we can return to the OT and Wasserstein distance when we understand the basics of
VAE formulation.

3.2.2 From VAE to WAE

The family of regularised Auto-Encoders based on OT is called Wasserstein Auto-Encoder
(WAE) and was introduced by Tolstikhin et al. (2017). Similarly to VAE, the objective of
WAE is composed of two terms: the reconstruction cost and the regulariser. It was shown
that the minimum reconstruction cost can be defined in the following way:

𝐶 = inf 𝔼𝑃𝑋𝔼𝑄(𝑍|𝑋)
[

𝑐(𝑋,𝐺(𝑍)
] (3.14)

where 𝐺(𝑍) = 𝑃 (𝑋|𝑍) is the Decoder, which maps from 𝑍 to 𝑋 and 𝑍 ∼ 𝑄(𝑍|𝑋).
We need to optimise over the Encoder 𝑄(𝑍|𝑋) with the penalty to the objective as a
regulariser.
Now let’s define the WAE Objective Function in comparison to VAE. Let’s recall that both
VAE and WAE aim to minimise the difference between the true but unknown distribution
𝑃 (𝑋) and the generated distribution by the Encoder 𝑃 (𝑋|𝑍). Let’s redefine equation 3.9.
We minimise the right-hand side of the equation:
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𝐷𝑉 𝐴𝐸
(

𝑃 (𝑥), 𝑃 (𝑋|𝑍)
)

= inf 𝔼𝑃𝑋
[

𝐾𝐿
(

𝑄(𝑍|𝑋)||𝑃 (𝑍)
)

− 𝔼[log𝑃 (𝑍|𝑋)]
] (3.15)

𝐷𝑊𝐴𝐸
(

𝑃 (𝑋), 𝑃 (𝑋|𝑍)
)

= inf 𝜆𝐷
(

𝑄(𝑍|𝑋), 𝑃 (𝑍)
)

+ 𝔼𝑃𝑋𝔼𝑄(𝑍|𝑋)
[

𝑐
(

𝑋,𝐺(𝑍)
)] (3.16)

Where 𝜆 is a hyperparameter to our regulariser. We expect WAE to provide a better recon-
struction without blurry representation as opposed to VAE, figure 3.4. The blurriness of-
ten observed in VAE-generated samples results from the trade-off between achieving high
reconstruction accuracy and the KL divergence term’s regularisation. In contrast, WAE
utilises the Wasserstein distance as their primary training objective, aiming to measure the
discrepancy between probability distributions and capture the underlying data distribution
more effectively, providing sharper sample generation. The only thing we don’t know yet
in the equation 3.16 is 𝐷(

𝑄(𝑍|𝑋), 𝑃 (𝑍)
).

Figure 3.4: WAE forces continuous mixture 𝑄(𝑧) = ∫ 𝑄(𝑧|𝑋)𝑑𝑃 (𝑧) (⦁) to match 𝑃 (𝑧) (grey
region), which provides better reconstruction ( ), as opposed to VAE, which forces to match 𝑃 (𝑧)
for every single input

3.2.3 MMD regulariser

The regulariser 𝐷(

𝑄(𝑍|𝑋), 𝑃 (𝑍)
) from equation 3.16 is a penalty component in the

optimisation process of the right-hand side of the equation. In contrast to the classical
formulation of VAE, Tolstikhin et al. (2017) changed KL divergence to Maximum-Mean
Discrepancy (MMD) (Gretton et al., 2012) metric, which is a distance on the space of prob-
ability measures and has been widely applied in various ML techniques. In the context of
Wasserstein Autoencoders, the regulariser penalises the Encoder by imposing constraints
on the Wasserstein distance between the encoded distribution and a predefined distribu-
tion (e.g., a standard normal distribution). This encourages the model to generate encoded
representations that follow a specific distribution, which can have benefits such as better
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generalization and improved disentanglement of features.
In general, MMD conveys the idea of estimating distances between probability distribu-
tions as the distance between the mean embeddings of features. Suppose we have distribu-
tions 𝑃 and𝑄 over a set . The MMD is defined by a feature map 𝑘 ∶  → ℋ , where ℋ
is a reproducing kernel Hilbert space. It is known that MMD performs well when match-
ing high-dimensional standard normal distributions. If the value of MMD is large, this
means that 𝑄(𝑍|𝑋) and 𝑃 (𝑍) are different distributions.

𝑀𝑀𝐷𝑘(𝑄(𝑍|𝑋), 𝑃 (𝑍)) = |

|

|

|

|

|∫
𝑘(𝑍, ⋅)𝑑𝑄(𝑍|𝑋) − ∫

𝑘(𝑍, ⋅)𝑑𝑃 (𝑍)||
|

|

|

|ℋ
(3.17)

𝑘(𝑍, ⋅) indicates the kernel has one argument fixed at 𝑍, and the second free. The kernel
𝑘 is inverse multiquadratic 𝑘(𝑥, 𝑦) = 𝐶∕(𝐶 + ||𝑥 − 𝑦||22) and, 𝐶 = 2𝑑𝑧𝜎2

𝑧 which is the
expected squared distance between two multivariate Gaussian vectors from 𝑃 (𝑍). The
quality of the generated objects is expected to depend on the Encoder 𝑄(𝑍|𝑋).
While both KL divergence and MMD are used to measure distributional differences, they
have different mathematical formulations, properties, and use cases. KL divergence is
asymmetric, has an information-theoretic interpretation, and is sensitive to outliers. In
contrast, MMD is symmetric, less sensitive to outliers, and focuses on differences in means
in a reproducing kernel Hilbert space.
Wasserstein distance is not new for geoscience and was utilised by Chan et al. (2019b),
Corrales et al. (2022), and T. Zhang et al. (2022).

3.3 Importance of Geometric Deep Learning

It has been previously noted that the Encoder and Decoder are parameterised by deep neu-
ral networks, which by default have a “classical” Convolutional Neural Networks (CNN) in
architecture. It is worth noting that CNNs were initially developed for regularly-structured
(Euclidean) data, such as images, texts, etc., which should be perceived as a limitation.
Works by Feng et al. (2022), Jiang et al. (2021), and Toma et al. (2022) use the archi-
tecture based on CNNs and LS as a source for generating geological representations.
However, these approaches have limitations and cannot describe the complex structural
features of reservoirs or irregularities in flow behaviour. To successfully solve the task of
generating three-dimensional geological objects considering structural uncertainty, gener-
ative machine learning models need to be modified to work with irregular (non-Euclidean)
data. Geometric deep learning is a general term encompassing machine learning methods
adapted for domains with structurally non-regular data, such as graphs; these approaches
allow convolutional operations on connected topological graph data.
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Geological structures often exhibit intricate spatial relationships, connectivity, and de-
pendencies that graph representations can effectively capture, unlike Euclidean data types.
Graph-based convolutions are particularly well-suited for geological modelling due to their
inherent ability to naturally preserve the topology of geological objects. In a framework
based on graph convolution, geological features are represented as nodes, and their rela-
tionships are depicted as edges, forming a graph structure. This approach aligns seamlessly
with the complex and interconnected nature of geological formations. Graph-based con-
volutions operate directly on the relationships encoded in the graph, allowing for a more
natural representation of geological topology. This is in contrast to grid-based convolu-
tions, which may struggle to handle irregularly shaped geological features and their con-
nectivity. This methodology ensures that convolutional operations adhere to the structure
of geological formations, allowing for more precise and realistic modelling of subsurface
processes, fault networks, and other complex geological phenomena.

Figure 3.5: Schematic field map. To
process a complex geological object
with CNN, it is necessary to add empty
cells ( ) to already existing ( ), only in
this case the representation will become
Euclidean.

Typically, geological models are represented as
grids with a predefined regular lattice. However, if
such a structure is transformed into a graph repre-
sentation, it becomes possible to use more advanced
graph convolutions, which enable the processing of
irregular geological structures. Each node of such
a graph can contain a vector of reservoir properties
(such as porosity, permeability, etc.). In contrast,
the edges connecting the graph nodes can be repre-
sented according to the structural features of the ge-
ological object (such as faults, unconformities, etc.).
From a purely technological point of view, if the
considered three-dimensional object has a complex
structure, additional computational memory needs
to be allocated to process it with convolutional net-
works, as such representations need to be supple-
mented with “empty cells” necessary only to make
the representation Euclidean, but such representa-
tion does not play any role in the geological model
itself (Bronstein et al., 2021), figure 3.5. To feed the
geological model into CNN-based GAN or VAE, it
needs to have some regular rectangular shape be-
cause the CNN’s filters provide sliding window op-
erations along the grid to perform some aggrega-
tions during the training process. So, if the gridded geological model would have a high
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proportion of zero-valued cells, it entails the GAN or VAE to train on these cells, which
is undesirable.
This section is the transition from the Euclidean CNNs to non-Euclidean.

3.3.1 CNN for Euclidean data types

Before describing and further using generative machine learning models based on graph
convolutions, it is necessary first to explain the principles of standard Convolutional Neural
Networks. Bronstein et al. (2021) highlight the main principle of deep learning, which
consists of two simple algorithmic approaches. The first involves representation learning
or feature learning, wherein customized features, often arranged hierarchically, capture the
relevant regularities for each task. The second approach is learning through local gradient
descent, commonly executed as backpropagation.
CNN is a deep learning algorithm that processes data with a grid-like topology or lat-
tice (Euclidean data), such as images, time series, and texts. CNN assigns importance to
different data features through learnable weights and biases (I. Goodfellow et al., 2016;
Hastie et al., 2009). Using various filters, CNN successfully captures spatial and temporal
dependencies in the data. The efficiency of CNN lies in reducing the dimensionality of the
original data to a size more suitable for further processing. At the same time, the quality
of predictions is ensured by selecting an optimal number of reduced-dimensional features
that describe the original data. In general, any CNN consists of three parts: a convolutional
layer, a pooling layer, and an activation function. Let’s briefly describe each part.

Convolutional layer

Suppose we have a regularly discretised map of some property (i.e., porosity) 𝑥(𝑛), where 𝑛
is the dimensionality of the map, i.e., the number of cells. Both 𝑥 and 𝑛 are real-valued, and
we can get a different reading anywhere. If our data is noisy, we want to find some general
regularities from our data by applying some smoothing or averaging by the function𝑤 and
get a representation 𝑠(𝑚).

𝑠(𝑚) =
(

𝑥(𝑛) ∗ 𝑤
)

=
∑

𝑛
(𝑥 ∗ 𝑤) (3.18)

NOTE: In the terminology of machine learning: the ∗ operator is usually called
convolution; 𝑥(𝑛) — input; 𝑤— kernel or filter; 𝑠(𝑚) output or feature map (𝑚 ≠ 𝑛
and, usually 𝑚 ≪ 𝑛).

During the forward pass, the kernel𝑤 slides along 𝑥(𝑛) and produces a representation 𝑠(𝑚)
of the kernel at each spatial position, figure 3.6.
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Figure 3.6: The Kernel of size 2×2 is applied to the Feature map to create Representation

From a geoscience perspective, our input data can be represented as a grid of porosity, per-
meability, lithology, etc., which can already be called a high-dimensional tensor. However,
CNNs typically have sparse interactions. This is achieved by setting the kernel size smaller
than the input data size. This allows the neural network to capture complex dependencies
among multiple features effectively.
Another useful feature of CNNs is equivariance to translation. This means that if the input
data changes, the output result will change similarly. For example, if a geological body
somehow changes its spatial location due to uncertainty quantification, on the property
map 𝑥(𝑛), the representation 𝑠(𝑚) will reflect this change.
However, CNNs are not naturally equivariant to certain transformations, such as changes
in scale or rotations, so more general approaches are needed.

The Pooling Layer

Figure 3.7: Pooling operation with
2×2 filter size that picks the maxi-
mum value

The pooling function replaces the output data with sum-
mary statistics, such as maximum or average, figure 3.7.
This allows the reduction of the spatial size of the repre-
sentation, which in turn reduces the required computa-
tional power and number of weight coefficients needed
for training the neural network model. Moreover, the
pooling operation helps make a representation approxi-
mately invariant to small perturbations in the input data.
If we slightly change the input information, the pooling
values will not change.

Activation functions

The main idea of neural networks is to extract linear
combinations of input features and model the target pa-
rameter as a nonlinear function of these input character-

57



3.3. IMPORTANCE OF GEOMETRIC DEEP LEARNING

istics. Since convolution is a linear transformation and maps can be highly nonlinear, non-
linear layers in the neural network (typically denoted by 𝜎) are usually placed immediately
after the convolutional layers to provide nonlinearity in the activation map.

𝑠(𝑚) = 𝜎
(

𝑥(𝑛) ∗ 𝑤
)

= 𝜎
∑

𝑛
(𝑥 ∗ 𝑤) (3.19)

Notice that if 𝜎 is the identity function, the entire model collapses to a linear model.

General features of CNN and Euclidean Data

Generative models (GAN, VAE, Diffusion) are based initially on “classical” Convolutional
Neural Networks, which, as was mentioned earlier, are designed for structured (Euclidean)
data such as images, texts, grids, etc., which is a limitation. One of the main assumptions
made for this type of data is compositionality, i.e., the ability to break down the problem
into different scales to facilitate the step-by-step learning process, figure 3.8.

Figure 3.8: Schematic representation of the compositionality property of the data when the task is
broken down into a sequence of steps of different scales.

This term means that Euclidean data form patterns, which are (figure 3.9):
• Local – Activation performed if a local feature is present
• Stationary – The quantity to be predicted does not change much if the input is slightly

deformed
• Multi-scale (hierarchical) – Combination of simple structures composes more ab-

stract
One of the key reasons for the success of deep neural networks in utilising the statistical
properties of data lies in the principles of stationarity and compositionality through local
statistics, which are present in videos, images, and sound.
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Figure 3.9: Schematic representation of the three main properties of Euclidean data on which the
work of CNN is based. From Zeiler et al. (2013).

3.3.2 Convolutions on non-Euclidean data

To effectively perform convolutional operations on non-Euclidean data, it is necessary to
formulate requirements similar to standard Euclidean convolutional operations. Therefore,
it is necessary to develop the compositionality property for unstructured data, such as
graphs. Similarly to standard Convolutional Neural Networks, the key to efficient learning
on graphs lies in developing local operations with shared weights that do message passing
between nodes and their neighbours. Message passing can be defined as computations
performed at each layer 𝑙 of a graph neural network. During message passing, each graph
node’s property is updated to aggregate the properties of neighbouring nodes and update
the learning parameters𝑤𝑙 for each layer. The term “message passing” reflects the essence
of the signal “travelling” through the network, passing through graph nodes along the path
of the neighbourhood between nodes (Papillon et al., 2023).
Compared to classical neural networks that process Euclidean data, the main difference
is that non-Euclidean data operations must be permutation-invariant, i.e., independent of
the order of passing through neighbour nodes. Additionally, the model should not depend
on the size and structure of the graph (Gilmer et al., 2017). All this makes graph-based
convolutions a good technique to obtain a reduced-order representation of complex geo-
logical objects, keeping the topology. In general, graph convolutions can be divided into
two main types: Spectral and Spatial.

Spectral Convolutions

The first method was popularised mainly in graph theory and signal analysis (Defferrard
et al., 2017). Graph signal processing allows convolutional operations that consider the
graph structure and individual properties of graph components. In general, our task is to
decompose a signal, such as a graph, into a combination of simple elements (wavelets)
that are usually orthogonal to each other, i.e., linearly independent, and therefore form a
basis.
When we talk about the operation of spectral decomposition applied to graph convolutions,
we mean the decomposition of the graph Laplacian𝐿. Such a Laplacian can be represented
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as a normalised adjacency matrix 𝐴. In this case, spectral decomposition allows us to find
elementary orthogonal elements (eigenvectors 𝑉 and eigenvalues Λ) that make up the
original graph.

𝐿 = 𝑉 Λ𝑉 𝑇 (3.20)
The Laplacian can be interpreted as the difference between the average value of a function
in an infinitesimal sphere around a certain point and the value of the same function at
that point. From a physical point of view, the Laplacian shows the direction of signal
propagation when applying energy to one of the nodes. It describes processes such as heat
conduction, quantum mechanics, and wave propagation, figure 3.10.
One limitation of using the spectral approach for graph convolutions is that the graph must
be undirected to ensure the symmetry of the adjacency matrix 𝐴, which allows us to find
the Laplacian.
To perform convolutional operations on a graph, it is sufficient to find several eigenvectors
corresponding to the smallest eigenvalues of the matrix. This approach may initially seem
counter-intuitive, as the standard PCA approach involves finding eigenvectors correspond-
ing to the largest eigenvalues of the matrix. However, the difference lies only in the fact
that the calculation of the Laplacian is performed with the opposite sign, thus making the
eigenvalues of PCA inversely proportional to the eigenvalues of the Laplacian.

Figure 3.10: From a physical point of
view, the Laplacian displays the speed
of propagation of an impulse, for exam-
ple, heat applied to a certain point.

Thus, the Laplacian of node features 𝑋, which al-
lows us to formulate a simple version of spectral
convolutions on graphs.

𝑋(𝑙+1) = 𝑉
(

𝑉 𝑇𝑋(𝑙) ⊙ 𝑉 𝑇𝑊 (𝑙)
𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙

) (3.21)

NOTE: ⊙ denotes element-wise multiplica-
tion, 𝑙 is the convolutional layer number, and
𝑊 is the convolutional kernel.

However, this approach imposes several constraints.
For example, the dimension of the convolutional
kernel 𝑊 depends on the number of nodes in the graph. Additionally, 𝑊 depends on
the graph structure encoded in the eigenvectors 𝑉 , and there is no guarantee of spatial
localisation of the kernel. Therefore, such an approach is not applicable to large graphs
with a non-fixed structure.
Further work proposes ways to overcome these limitations. For example, in the work by
Bruna et al. (2014), a method for reducing the size and localising the kernel was proposed.
The idea is to represent the filter 𝑊 in the equation 3.21 as a sum of certain functions,
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such as splines, which allows for 𝐾 coefficients 𝛼 instead of 𝑁 values in the 𝑊 matrix:

𝑊 (𝑙)
𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 ≈

𝐾
∑

𝑘=1
𝛼𝑘𝑓𝑘 (3.22)

However, the filter 𝑊 still depends on the eigenvectors 𝑉 , making this approach inap-
plicable for datasets with a non-fixed graph structure. Although spectral convolutional
operations are used much less frequently than spatial ones, understanding the principles
of their operation allows us to understand potential problems that arise when processing
non-Euclidean data types.

Spatial convolutions

The idea of spatial graph convolutions is as follows: the neighbourhood of graph nodes
determines the computations on the graph, i.e., if we want to calculate an embedding for a
target node, the calculations are performed considering the neighbouring connected nodes.
Thus, if each graph node is defined by a feature vector ℎ, spatial graph convolutions trans-
form and aggregate features considering the neighbourhood. In other words, the network
learns to propagate and aggregate information in the graph.
One example of spatial convolutional networks is presented in the work by Hamilton et al.
(2018). Figure 3.11 shows the basic scheme. To calculate the properties of the target node
𝑡 for a layer 𝑙 + 1, all neighbouring nodes should be considered ( 𝑎 , 𝑏 , 𝑐 ). The infor-

mation from the neighbouring nodes is passed to a transformation operation ( 𝑄 ), then
aggregated ( ∑(⋅) ) and transformed ( 𝑊 ) concerning the target node 𝑡 . This sequence
of actions is performed for each node in the graph. Thus, matrices 𝑄 and 𝑊 are the
training parameters of the neural network.

ℎ(𝑙+1)𝑡 = 𝑓 𝑙(ℎ(𝑙)𝑡 , ℎ
(𝑙)
𝑛 ) = 𝜎(𝑊 (𝑙)ℎ(𝑙)𝑡 +𝑄(𝑙)ℎ(𝑙)𝑛 ) (3.23)

ℎ(𝑙)𝑛 = 1
(𝑛 − 1)

∑

𝑛≠𝑡
ℎ(𝑙)𝑖 (3.24)

Therefore, such convolutional architecture allows the utilisation of various aggregators,
such as mean, LSTM, Max-pooling; loss functions: cross-entropy, hinge loss, ranking
loss, etc. The neural network has a fixed set of training parameters and can be applied to
any node in the graph.
To effectively aggregate information from complex geological objects with different spa-
tial characteristics, it is necessary to consider the properties of the nearest neighbours and
higher-dimensional graph structures. This type of graph convolutional architecture was
proposed by Morris et al. (2021) and formed the basis for graph VAE developed within
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Figure 3.11: Schematic representation of the operation of a convolutional graph neural network for
a node 𝑡 , where ℎ — features of the node on the layer 𝑙.

the framework of the presented research.

3.3.3 Graph Wasserstein Variational Autoencoder (GWAE)

The key feature of the proposed approach of performing convolutional operations on graph
data types is that message passing occurs on sub-graphs of different dimensions, not just
nodes. Thus, it becomes possible to incorporate a hierarchical approach to graph process-
ing, which allows taking into account and combining geological features at the scale of
nodes and larger-scale objects in the form of sub-graphs.

NOTE: For a more formal description of this type of convolution operations, let’s
introduce the following notations: Graph 𝐺 is a pair (𝑉 ,𝐸), where 𝑉 — finite set
of nodes, 𝐸 ⊆ {{𝑢, 𝑣} ⊆ 𝑉 |𝑢 ≠ 𝑣} - set of edges. Define (𝑢, 𝑣) as a specific edge
of 𝐺. 𝑁(𝑣) — set of neighbours of 𝑣 ∈ 𝑉 , i.e. 𝑁(𝑣) = {𝑢 ∈ 𝑉 |(𝑣, 𝑢) ∈ 𝐸}.

The concept of the hierarchy could be linked to the earlier idea of MPS - connected data
and higher-order statistics. In geostatistics, particularly in techniques like Training Im-
ages/MPS, the approach is lattice-based, where spatial patterns are characterised by tran-
sitioning from one state to another in a predefined grid or lattice. Contrastingly, the
graph-based approach delves into the topology of data, capturing the relationships and
connections between nodes and sub-graphs. This graph-centric methodology enables the
elicitation of connected node information at various levels, be it first-order connections,
second-order connections, and so forth. Unlike MPS, which primarily involves the colla-
tion of statistics and the inference of distributions based on observed patterns, the graph-
based model incorporates a learning mechanism. This learning aspect allows the system
to adapt and refine its understanding of complex relationships within the data, provid-
ing a more dynamic and adaptable framework for capturing and leveraging higher-order
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statistical patterns in interconnected datasets.
To introduce the concept of graph-based hierarchy, it is necessary to modify the equation
3.23 to include the neighbourhood of nodes and sub-graphs of different levels. Introduce
𝑘-element subset [𝑉 𝑘] ⊂ 𝑉 , where 𝑠 = {𝑠1, ..., 𝑠𝑘} - 𝑘-set in [𝑉 𝑘]. So the neighbourhood
of 𝑠 is: 𝑁(𝑠) = {𝑡 ∈ [𝑉 𝑘]||𝑠 ∩ 𝑡| = 𝑘 − 1}. Local neighbourhood 𝑁𝐿(𝑠) consists of
𝑡 ∈ 𝑁(𝑠), which has edges (𝑢, 𝑣) ∈ 𝐸 for every 𝑢 ∈ 𝑠 ⧵ 𝑡 and 𝑣 ∈ 𝑡 ⧵ 𝑠. From the other
side, global neighbourhood 𝑁𝐺(𝑠) is defined as 𝑁(𝑠) ⧵𝑁𝐿(𝑠). Schematically 𝑘-element
subset, the local and global neighbourhood is depicted in figure 3.12
Equation 3.23 can be defined as follows:

ℎ(𝑙+1)𝑡 (𝑠) = 𝜎
(

𝑊 (𝑙)ℎ(𝑙)𝑡 (𝑠) +
∑

𝑢∈𝑁𝐿(𝑠)
𝑄(𝑙)
𝐿 ℎ

(𝑙)
𝑛 (𝑢) +

∑

𝑣∈𝑁𝐺(𝑠)
𝑄(𝑙)
𝐺 ℎ

(𝑙)
𝑛 (𝑣)

) (3.25)

Using matrices𝑊 ,𝑄𝐿, 𝑄𝐺 makes it possible to train a neural network taking into account
local and global neighbourhoods. Additionally, using subsets of nodes (𝑠) as a single
element allows for hierarchy in training, figure 3.13.

Figure 3.12: The concept of
neighborhood 𝑁(𝑠) (⬯) of subset
of elements 𝑠 of the graph. Lo-
cal neighbourhood 𝑁𝐿(𝑠) (⟍) is
determined by the neighbourhood
of the nodes of the set 𝑁(𝑠) with
the elements of a subset 𝑠. Global
neighbourhood 𝑁𝐺(𝑠) (⟍) is de-
termined as the difference of sets
𝑁(𝑠) and 𝑁𝐿(𝑠)

Thus, the discussed modification of graph CNN allows
for the creation of a set of training layers that aggregate
information not only for neighbouring nodes but also
for subgraphs of different dimensions. Such a hierarchy
in graph convolutions is now known as cell complexes
and can be considered a multidimensional generalisa-
tion of graphs. Unlike graphs, which consist of nodes
and edges, cell complexes can also contain structures of
higher dimensionality (Battiston et al., 2021; Papillon et
al., 2023). This is important when considering geologi-
cal objects as research objects, as they possess local and
global structures.
Combining the above, I present a general version of the
Graph Wasserstein Variational Autoencoder (GWAE),
which will be used as a generator for geological real-
isations. In its general form, it consists of two neu-
ral networks: an Encoder

(

𝑄(𝑍|𝑋)
) and a Decoder

(

𝑃 (𝑋|𝑍)
), each of which is a sequence of graph convolutional networks (⦁). The up-

per part of figure 3.14 schematically represents the GWAE. The training dataset, a set of
unstructured graphs, is passed to the Encoder, which performs convolutional operations.
The result is the parameters of the distribution 𝑄(𝑍|𝑋) ( ), which are the parameters of
the latent space. It is worth noting that the dimensionality of the LS is manually specified
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Figure 3.13: Visualisation of the process of hierarchical convolution on a graph. 1-GNN provides
message passing on the level of nodes. 2-GNN is the process performed on the sub-graph level,
composed of pairs of nodes. 3-GNN – level of sub-graphs with triplets of nodes.

and empirically adjusted until the reconstruction quality of the Decoder starts to degrade.
In the next step, a hidden vector 𝑧 is sampled from the distribution 𝑄(𝑍|𝑋) ( ). If the
GWAE is trained correctly, the vector 𝑧 contains enough information for the Decoder to
reconstruct 𝑥 correctly.
The bottom of figure 3.14 shows the loss function required for training GWAE. As men-
tioned earlier, the loss function consists of two terms ( ): the reconstruction error, which
ensures that the generated model is similar to the original and a regulariser that enforces
a Gaussian distribution for 𝑄(𝑍|𝑋). In the case of GWAE, the reconstruction error is
controlled by equation 3.14, and the regulariser is controlled by the Maximum-Mean Dis-
crepancy, equation 3.17.
Thus, this architecture allows minimising one of the main drawbacks of traditional VAEs
— blurriness of a generated object and also enables handling objects with complex and
irregular topology through graph convolutional networks that consider the spatial com-
plexity of the objects under consideration.
It should be noted that specific parameters of the convolutional layers and the hidden layer
are omitted, as they depend on the complexity of the dataset.

3.4 Optimisation theory

When we have trained GWAE on the training dataset, all we need is the hidden space 
and the Decoder, which allows to perform the mapping operation  →  . However,
to solve specific practical problems such as history matching, UQ, etc., conditioned on
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Figure 3.14: Schematic representation of GWAE: a sample 𝑥 ∈  goes into Encoder and converted
by a sequence of graph convolutions (⦁) into a latent vector 𝑧 ∈ . Then, it could be sampled from
 and converted back into the initial representation. The quality of GWAE training is controlled
by reconstruction loss and regulariser ( ).

data available, it is necessary for the generated models to meet predefined requirements,
namely, not contradict static well data in the form of well logs and also satisfy the condi-
tions of matching dynamic data (oil production, water production, water injection, etc.).
Therefore, to effectively search such model representations through the hidden space, it is
necessary to define the Objective Function (OF) and optimisation algorithm.
The success of deep learning is mainly due to the ability to use the backpropagation al-
gorithm to efficiently compute the gradient of the OF concerning each model parameter.
With the help of these gradients, we can effectively search the parameter space to solve
the optimisation problem and find neural network parameters.
OpenAI has published an article titled “Evolution Strategies as a Scalable Alternative to
Reinforcement Learning” (Salimans et al., 2017), in which they demonstrate that Evolu-
tion Strategies (ES) offers several advantages. One of the advantages is that the algorithm
does not require gradient calculations for its operation, making it more computationally
efficient. Additionally, the Evolution Strategies algorithm’s workload can be distributed
across multiple parallel processes. Regarding the variety of solutions obtained, ES also
holds a certain advantage because repeated algorithm runs may lead to different optima,
unlike standard gradient-based methods.
The article notes that we cannot directly compute gradients even for tasks such as designing
a neural network architecture. Meanwhile, evolution strategy or genetic algorithms can be
applied to search in the model architecture space. So, for the problem of searching in the
multidimensional latent space, it could be very expensive to compute gradients or even
impossible because we can get stuck in the regions of low density.
Evolution strategies can be presented with various definitions, but we can characterize
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them as algorithms that provide users with a set of candidate solutions for assessing a given
problem. The evaluation relies on an OF, which, given a solution, produces a singular
fitness value. Utilising the fitness outcomes from the existing solutions, the algorithm
generates the subsequent generation of candidates expected to yield superior results. The
iterative cycle continues until the optimisation process identifies the best-known solution.
While the population size usually remains constant for each generation, it’s not a manda-
tory condition. ES can produce numerous candidate solutions, as it generates solutions
from a distribution with continuously updated parameters in each generation.

3.4.1 Covariance-Matrix Adaptation Evolution Strategy (CMA-ES)

One limitation shared by both ES strategies and basic genetic algorithms is the constant
standard deviation for parameters, limiting the search space exploration. There are pro-
cesses when we desire greater exploration, prompting an increase in the standard deviation
within our search space. Conversely, there are times when we are certain about proximity
to an optimal solution and aim to refine the existing solution. So, we need an adaptive
approach with varying search space exploration.
CMA-ES (Hansen, 2023) is an optimisation algorithm that can take the results of each
generation and adaptively adjust the search space for the subsequent generation. It adapts
the mean value parameters 𝜇 with standard deviation 𝜎 and computes the entire covariance
matrix of the parameter space. In every generational step, CMA-ES computes parameters
for sampling solutions from a multivariate normal distribution (Kriest et al., 2020; Miyagi
et al., 2018; Sayyafzadeh et al., 2018).
Let’s consider the process of covariance matrix estimation because it is important for un-
derstanding the CMA-ES methodology. We should use the equations below to estimate
the 2𝑥2 covariance 𝐶 matrix of a whole 2-dimensional generation 𝑔(𝑥, 𝑦) of size 𝑛.

𝜎2
𝑥 =

1
𝑛

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝜇𝑥)2 (3.26)

𝜎2
𝑦 =

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝜇𝑦)2 (3.27)

𝜎2
𝑥𝑦 =

1
𝑛

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦) (3.28)

CMA-ES modifies the covariance matrix calculation in a smart way to adapt it to the
optimisation task. Firstly, the algorithm picks the top 𝑛𝑏𝑒𝑠𝑡 solutions by fitness for each
generation 𝑔. After sorting the solutions, the mean of the next generation 𝜇𝑔+1 is estimated
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as 𝑛𝑏𝑒𝑠𝑡 solutions in the current population 𝑔.

𝜇𝑔+1𝑥 = 1
𝑛𝑏𝑒𝑠𝑡

𝑛𝑏𝑒𝑠𝑡
∑

𝑖=1
𝑥𝑖 (3.29)

𝜇𝑔+1𝑦 = 1
𝑛𝑏𝑒𝑠𝑡

𝑛𝑏𝑒𝑠𝑡
∑

𝑖=1
𝑦𝑖 (3.30)

Then, only 𝑛𝑏𝑒𝑠𝑡 solutions are used to estimate the covariance matrix 𝐶𝑔+1 of the next
generation, but the smart thing than 𝜇𝑔 is used instead of the updated parameters 𝜇𝑔+1.

𝜎2,𝑔+1
𝑥 = 1

𝑛𝑏𝑒𝑠𝑡

𝑛𝑏𝑒𝑠𝑡
∑

𝑖=1
(𝑥𝑖 − 𝜇𝑔𝑥)

2 (3.31)

𝜎2,𝑔+1
𝑦 = 1

𝑛𝑏𝑒𝑠𝑡

𝑛𝑏𝑒𝑠𝑡
∑

𝑖=1
(𝑦𝑖 − 𝜇𝑔𝑦)

2 (3.32)

𝜎2,𝑔+1
𝑥𝑦 = 1

𝑛𝑏𝑒𝑠𝑡

𝑛𝑏𝑒𝑠𝑡
∑

𝑖=1
(𝑥𝑖 − 𝜇𝑔𝑥)(𝑦𝑖 − 𝜇

𝑔
𝑦) (3.33)

Below is a set of steps on how CMA-ES uses the results from the current generation:
Algorithm 1: CMA-ES optimisation
for 𝑔 ← 1, 𝑁 do

Compute the fitness estimate for each candidate solution in generation 𝑔;
Select the top 50% of the population in generation 𝑔;
Using only the top 50% solutions together with the 𝜇𝑔, compute 𝐶𝑔+1;
Generate a new set of candidate solutions using the updated 𝜇𝑔+1 and 𝐶𝑔+1;

end

Adapting both the 𝜇 value and 𝐶 , based on information from the best solutions, CMA-
ES can determine whether to broaden the search when the top solutions are distant or to
decrease the search space when the top solutions are proximate, figure 3.15.

Figure 3.15: Visualisation of an CMA-ES run on a simple 2D problem. Where - is a search
space, - the generation before estimation of the fitness and - the generation after estimation of
the fitness.

The main limitation lies in its performance when dealing with many model parameters, as
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computing the covariance has𝑂(𝑁2) complexity. However, approximations have recently
been proposed to speed up the calculations to 𝑂(𝑁). CMA-ES is very efficient if the
search space dimension is fewer than a thousand parameters.

3.5 Why it is important to keep LS small enough

Recent research in machine learning has revealed the double descent phenomenon, which
is an unexpected finding, that the test error of a model decreases initially, then increases,
and then decreases again as the model complexity increases (Belkin et al., 2019; Schaef-
fer et al., 2023). This phenomenon is intriguing because it goes against the conventional
bias-variance trade-off theory, which states that as model complexity grows, the test error
should decrease at first and then start to rise continuously. In other words, when the ca-
pacity of a model exceeds the interpolation threshold, the model’s accuracy experiences a
significant improvement.
The double descent phenomenon has been identified across different machine learning
contexts, such as linear regression, neural networks, and other model types. It indicates
that there are distinct levels of model complexity where the test error behaves differently,
challenging our comprehension of how models generalise to new data. This observation
implies that, in the realm of machine learning, the greater the dimensionality of a GWAE’s
hidden space, the greater its generative capability will be. However, when aiming to opti-
mise within a latent space in a problem of HM, the notion that "bigger is better" no longer
holds true.
Even if we have a rather robust optimisation algorithm, which can handle thousands of
parameters, it is still important to keep LS as small as possible.
The “Curse of Dimensionality” concept, first introduced by Bellman et al. (1959), is a crit-
ical limiting factor in solving complex optimisation problems. It can be described from
various perspectives (Bronstein et al., 2021; L. Chen, 2009; Hastie et al., 2009). For ex-
ample, let’s assume that all input parameters are uniformly distributed in a 𝑑-dimensional
unit hypercube. To cover 1% (𝑛 = 0.01) of all data in a 10-dimensional space, we need
to consider 63% of the spread of all input data (𝑒𝑑(𝑛) = 𝑛1∕𝑑), i.e., the edge of such an
embedded hypercube should be 0.63 in length, while the absolute range of information is
1. When increasing the percentage of data description to 10% (𝑛 = 0.1), it is necessary to
consider 80% of the information spread.
If we reduce the dimensionality of the space to 𝑑 = 2, then solving such a problem will
be simplified to 10% and 32%, respectively.
Another interpretation of the “Curse of Dimensionality” is described from the perspective
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of sample density, which is proportional to 𝑁1∕𝑑 , where 𝑑 is the dimensionality of the
input parameters, and 𝑁 is the sample size. Therefore, if 𝑁1 = 100 is the sample size for
describing one parameter, then for describing 10 parameters, a sample size of𝑁10 = 10010

is required.
Moreover, if we return to the data property called Stationary, it can be formulated as fol-
lows: ||𝑓 (𝑥)−𝑓 (𝑥+𝜖)|| ≤ ||𝑥−(𝑥+𝜖)||, which means that if we slightly change our input
data, the result should not change significantly (Lipschitz continuous function). Thus, the
complexity of testing this condition will exponentially increase with the dimensionality of
the space.
In the paper “On the Latent Space of Wasserstein Auto-Encoders”, Rubenstein et al. (2018)
study the role of dimensionality of the latent spaces. In Chapter 1: Introduction I men-
tioned that through the use of LS , we are trying to model the “real” natural processes
that formed a specific geological object. This means that “real” physical processes can
also be represented as a set of parameters that shape the geological object. Thus, the
question arises: what if the dimensionality of  is significantly smaller or larger than the
dimensionality of the “real” processes, which Rubenstein calls “intrinsic dimensionality”?
An experiment demonstrated a scenario where a one-dimensional law was encoded into a
hidden space of two dimensions. The WAE successfully reconstructed the objects while
also attempting to evenly distribute the one-dimensional data manifold within the latent
space. To achieve this, the WAE had to curl up the manifold in the LS. In practical terms,
the WAE only needed to fill the space enough to deceive the divergence measure employed
by the Wasserstein metric. This experiment can be extrapolated into higher-dimensional
problems, which will cause latent spaces of complex topology and bring additional diffi-
culties for the optimisation process.
On the contrary, if the dimension of a LS is much smaller than the “intrinsic dimensional-
ity”, it will cause difficulties for the Decoder to reconstruct an object 𝑥 due to insufficient
information encoded into the latent vector 𝑧.
The dimensionality of the LS is crucial in manifold projection methods. Significant data
characteristics are compressed into a single dimension if the dimensionality is too small.
At the same time, if the dimensionality is too large, the projections become noisy and may
even become unstable in certain cases.
Currently, the problem of automatically determining the intrinsic dimensionality comes
to the forefront when it is necessary to decide on the number of independent variables
for a complete description of the state of a system (B. Chen et al., 2021; Levina et al.,
2004). There are two general groups to estimate the internal dimensionality: Eigenvalue
and Geometric methods. The first can be a good tool for exploratory purposes, where one
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can plot eigenvalues and look for a clear boundary, but not for obtaining reliable estimates
of the internal dimensionality. The second method uses the internal geometry of the dataset
and is more effective because it can process non-linear manifolds. However, a more in-
depth consideration of the issue goes beyond the scope of this work.

3.6 Inner Geometry of a Latent Space

Clouds are not spheres, mountains are not cones,
coastlines are not circles, and bark is not smooth,
nor does lightning travel in a straight line.

Benoît Mandelbrot

In the final sections of this chapter, I will move on to more advanced technologies neces-
sary for a deeper understanding and analysis of hidden spaces. Therefore, we will elevate
the level of abstraction to Riemannian geometry and Topological Data Analysis.

Figure 3.16: The concept of ambient space 
which in 3D (�); intrinsic space in 2D ( ); LS
 ( ), which tries to cover intrinsic space; latent
vectors 𝑧 of different classes ( , ); strait (Eu-
clidean) interpolation (⏤); shortest (geodesic)
path (◡)

At the beginning of the chapter, I men-
tioned the manifold concept and promised
to provide a more detailed definition. Re-
call that if the dimensionality of the hid-
den space  is greater than the intrinsic di-
mensionality, then in this case, GWAE had
to curl up the manifold in the latent space.
In general, we assume that the data (obser-
vations) lie in a space of a nonlinear low-
dimensional manifold. In simpler terms, a
geological object is generated by some hid-
den nonlinear process, so the data we ob-
serve, due to field exploration, lies in the
parameter space of this hidden process –
this space can be called a manifold. Thus,
ideally, our latent space should fully repli-
cate the manifold, which is impossible.
On the other hand, a manifold can be viewed as a curved surface in an ambient space, where
the ambient space is the dimensionality of the space of our features that we observe as a
result of field exploration. Therefore, when analysing a LS, it is necessary to consider the
curvature of space, which leads to errors using Euclidean metrics when working with latent
vectors. We must use metrics that consider the non-Euclidean geometry of the hidden
space, figure 3.16.
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From here arises the question of what methods let us determine the curvature of the latent
space and thus define a metric that allows us to work in such a space. Therefore, replacing
Euclidean “straight lines” with “shortest paths” (from the perspective of differential ge-
ometry, such paths are called geodesics) for working with latent spaces GWAE will allow
us to achieve the following practical goals:

• improve the optimisation process. Introducing a metric that corresponds to the den-
sity of the regions in the LS will provide the optimisation process with informa-
tion that we are staying in a high-density space, which means that the generator
reproduces the most probable objects, which can be interpreted as the most realistic
objects from a geological point of view.

• shortest paths. Allows the selection of vectors from hidden spaces that correspond
to similar geological objects more confidently.

• smooth interpolation through the latent space. Provides the ability to smoothly tran-
sition from one geological realisation to another through the latent space

To implement this concept, it is necessary to include the notion of Riemannian spaces in
the analysis.
The works by Arvanitidis et al. (2021), Lawrence (2005), Shao et al. (2017), and Tosi
et al. (2014) were among the first to focus on the analysis of latent spaces generated by
generative neural networks in terms of their internal nonlinearity. They showed that taking
into account the internal nonlinearity improves the quality of sampling latent vectors 𝑧 of
the LS , which leads to an increase in the quality of generated objects 𝑥.
The present section introduces a metric for assessing the curvature of the hidden space,
which was adapted from the work of Arvanitidis (2019).
According to the beginning of this chapter, our dataset {𝑥} ∈  = ℝ𝑛. Similarly, let us
assume that  "lives" in some nonlinear hidden space , which ideally is our intrinsic
manifold.

NOTE:
𝑆𝑚
+ — positive definite matrix of size 𝑚.

𝕁 - Jacobian, which reflects the rate of change.

Denote the Riemannian space as  = ℝ𝑚, since the hidden space of GWAE should ideally
be as close to it as possible. Therefore, to take into account the curvature of the Riemannian
space, we need to introduce a metric tensor 𝐙 ∶  → 𝑆𝑚

+ . Ideally, the values of the metric
tensor should be small in regions of  confirmed by observations 𝑥, otherwise 𝐙 should
be large, indicating that in such regions of  there was no data from the training set 𝑥.
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By definition, the Decoder is a function of the form: 𝑓 (𝑍) = 𝑃 (𝑋|𝑍) = 𝜇𝜃 + 𝜎𝜃 ⊙ 𝜖,
where 𝜖 ∼  (0, 𝐼𝑛). According to Arvanitidis (2019), 𝑓 should generate a pull-back
metric (Khlevniuk et al., 2017) in the space , taking into account its internal geometry
(Arvanitidis et al., 2021).

𝐙𝑓 (𝑧) = 𝕁𝑓 (𝑧)⊺𝕁𝑓 (𝑧) = 𝕁𝜇(𝑧)⊺𝕁𝜇(𝑧) + 𝕁𝜎(𝑧)⊺𝕁𝜎(𝑧). (3.34)

This metric 𝐙 has several desirable properties. The first term considers the curvature of
the hidden space , while the second term increases with uncertainty. Therefore, regions
of the hidden space without training data should have high metric 𝐙 values.
However, one of the critical features of neural networks is that they have high interpolation
capability but low extrapolation capability. Therefore, we cannot guarantee that regions
of the latent space without training data will have high uncertainty, i.e., high values of 𝜎𝜃.
To avoid this negative impact, we need an inverted estimate of 𝜎𝜃, with a neural network
that extrapolates the metric values to zero in uncertain regions of the hidden space. Ac-
cording to Que et al. (2016), it is sufficient to train the precision 𝛽𝜓 (𝑧) = 1

𝜎𝜓 (𝑧)
using a

neural network with Radial Basis Function.

𝛽𝜓 (𝑧) = 𝑊+𝑣𝑘(𝑧) + 𝜉 (3.35)
𝑣𝑘(𝑧) = 𝑒𝑥𝑝(−𝜆𝑘||𝑧 − 𝑐𝑘||22) (3.36)

where 𝜓 - parameters of a neural network, 𝑊+ - positive definite matrix of weights, re-
quired for a positive estimate, 𝑐𝑘 ∈ , 𝜉 - prevents division by zero. 𝜆𝑘 — centres and
bandwidths of 𝑘 = 1, ..., 𝐾 Radial Basis Functions. This estimate is interpreted as follows:
as the distance from the centroid increases, the uncertainty of the metric increases.
To calculate the metric 𝐙, it is necessary to employ the method of Jacobian calculation.
This is based on the calculation of partial derivatives of the Decoder. Given that the De-
coder is comprised of a sequence of linear transformations of graph convolutions, it is
essential to perform calculations over the weight coefficients of the hidden layers in or-
der to find the Jacobian. It should be noted that Jacobian estimation is a computationally
demanding process, so it’s not always possible to calculate it in practice.
To improve the efficiency of the optimisation algorithm (CMA-ES) presented in Subsec-
tion 3.4.1: Covariance-Matrix Adaptation Evolution Strategy (CMA-ES), it is nec-
essary to use geodesic distances between points instead of Euclidean distances, as is cur-
rently done. However, on the other hand, this may not be efficient in terms of compu-
tational time for finding optima, as calculating Jacobians is a computationally intensive
task. To address this, it seems necessary to resort to approaches for approximating Ja-
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cobians (Gatilov, 2014; G. Wang et al., 2023) only then the optimisation in Riemannian
space be feasible. In any case, improving and speeding up the optimiser’s performance in
hidden spaces is not the objective of this study but rather one of the directions for further
development.
In summary, we have described a metric 𝐙 that provides an estimate of the curvature of the
hidden space and increases the uncertainty estimate as we move away from dense regions
of the hidden space covered by training data.

3.7 Objective function in HM process

Assisted history matching (AHM) methods have become widely used to provide an auto-
mated adjustment of reservoir model parameters to achieve the best resemblance between
modelled and historical dynamic indicators such as production rates, cumulative produc-
tion and pressure measurements. The essential components of AHM process are an opti-
misation algorithm and an Objective Function, which estimates the agreement of a model
under consideration with the data at hand. The OF is a function of multiple variables that
must be minimised using an optimisation algorithm. Serving as a measure of discrep-
ancy between calculation and history, the OF, with the help of an optimisation algorithm,
provides an iterative improvement, allowing for refining reservoir parameters.
With the development of generative neural networks as a method of matching geological
models, the OF must control the quality of matching based on production data and static
indicators such as well logs. Furthermore, even good matching to static well informa-
tion does not guarantee the geological realism of the final model, as the spatial distribu-
tion of properties may be disrupted. Therefore, similar to Mosser et al. (2019), the OF
should consist of three main components: the error in reproducing dynamic production
data (𝐿𝑜𝑠𝑠𝑓𝑙𝑜𝑤), the error in reproducing static information such as well logs (𝐿𝑜𝑠𝑠𝑠𝑡𝑎𝑡𝑖𝑐),
and the control of geological realism of the model in general (𝐿𝑜𝑠𝑠𝑟𝑒𝑎𝑙𝑖𝑠𝑚), which is re-
sponsible for property propagation in the inter-well space, providing geologically reliable
representations.

𝐿𝑜𝑠𝑠 = 𝑤𝑓𝐿𝑜𝑠𝑠𝑓𝑙𝑜𝑤 +𝑤𝑠𝐿𝑜𝑠𝑠𝑠𝑡𝑎𝑡𝑖𝑐 +𝑤𝑟𝐿𝑜𝑠𝑠𝑟𝑒𝑎𝑙𝑖𝑠𝑚 (3.37)

Where 𝑤𝑓 , 𝑤𝑟, 𝑤𝑟 are weights to provide additional flexibility to the overall loss function.
The first method for estimating the degree of error can be traced back to the early devel-
opment of statistics and probability theory. The concept of Mean Squared Error (MSE)
can be attributed to the work of mathematician Carl Friedrich Gauss (Gauss et al., 1957)
in the early 19th century.
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Gauss introduced the concept of least squares estimation, which involves minimising the
sum of squared errors between observed data points and their corresponding estimated
values. This approach was a significant advancement in statistical estimation, providing a
systematic way to find the best-fitting line or curve through a set of data points.
Squared errors in Gauss’s method were primarily motivated by mathematical convenience,
as squaring the errors allowed for more straightforward calculations and mathematical
derivations. Additionally, squaring the errors ensured they were always positive, avoiding
issues with cancelling out positive and negative errors.
The MSE as a formal measure of discrepancy was further developed and popularised in
the 20th century, particularly through the works of Fisher (1920) and Splawa-Neyman
(1990). Fisher emphasised the importance of using unbiased estimators and introduced
the concept of mean squared deviation as a measure of precision.

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (3.38)

Neyman, another influential statistician, expanded on Fisher’s work and formalised the
concept of Mean Squared Error. He recognised that minimising the MSE was equivalent
to maximising the efficiency of an estimator, which measures how much information about
the population is captured by the sample.
Since then, the MSE has become a widely accepted criterion for assessing the quality of
estimators in various fields, including statistics and machine learning. Its simplicity and
mathematical properties make it a convenient measure for comparing different estimation
methods and evaluating their performance.
However, the MSE has some limitations. It gives equal weight to all errors, regardless of
their magnitude or importance. This means that large errors have the same impact on the
MSE as small error values, which may not accurately reflect the true performance of an
estimator.
Alternative error measures have been proposed to address this issue. One such measure
is the Mean Absolute Error (MAE), which takes the absolute value of errors instead of
squaring them. This gives more weight to larger errors and can provide a more robust
performance measure in certain situations.
Another commonly used error measure is the Root Mean Squared Error (RMSE), the
square root of the MSE. The RMSE has the advantage of being in the same unit as the
original data, making it easier to interpret. However, it still has the same limitations as the
MSE in giving equal weight to all errors.
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Overall, the choice of error measure depends on the specific requirements and charac-
teristics of the problem. It is essential to consider the implications and limitations of
different measures when evaluating and comparing estimators. Most of the HM publica-
tions utilise MSE or RMSE error measure (Hutahaean et al., 2015; 2017; Purshouse et al.,
2003; Schulze-Riegert et al., 2017). In the context of uncertainty quantification, MSE and
RMSE are particularly valuable as they facilitate the evaluation of posterior probabilities
within a Bayesian framework (Christie et al., 2006; O’Sullivan, 2004). This assumes that
the errors in the likelihood model follow a Gaussian distribution. In further analysis, we
will refer to MSE error measure because data considered in experiments is semisynthetic
without any special importance differentiation.
Let’s consider equation’s 3.37 components in more detail.

3.7.1 Flow loss function

One of the main criteria for evaluating the quality of HM of a simulation model is the
assessment of the degree of reproduction of production data from each specific well of
a field. The parameters involved in model matching are selected so that the simulation
model reproduces the data obtained from the field as accurately as possible.
Thus, the component of the loss function responsible for dynamic error estimation is rep-
resented by the following expression 3.39:

𝐿𝑜𝑠𝑠𝑓𝑙𝑜𝑤 = 𝑤𝑓

𝐶
∑

𝑐=1

𝑀
∑

𝑖=1

1
𝑁

𝑁
∑

𝑛=1

(

𝑦𝑜𝑏𝑠𝑐,𝑖,𝑛 − 𝑦
𝑠𝑖𝑚
𝑐,𝑖,𝑛

)2 (3.39)

Where, 𝑦𝑜𝑏𝑠 - production data observed, 𝑦𝑠𝑖𝑚 - production data simulated, 𝑁 - number of
time steps, 𝑀 - number of wells, 𝐶 - number of production components (oil, water, gas,
injection).
It is recommended (Yeremian, 2022) use current flow rates for all types of fluids. Us-
ing current indicators helps to avoid accumulated errors that are inherent in accumulated
well performance indicators. Accumulated well performance indicators are integral quan-
tities. As a result, when using them in the loss function, the following problems may
arise. For example, suppose there is an outlier in the flow rate measurements of a well
at the beginning of its operation. In that case, this will affect the values of the accumu-
lated oil production, which will worsen the overall matching result after the outlier, as the
optimisation algorithm will be based on the distorted historical curve of accumulated oil
production. When using current flow rates in the loss function, such a problem does not
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exist.
The second reason is that in some sections, the model values for the oil flow rate may
exceed historical values, while in others, they may be lower. Integral matching based on
accumulated values will be good, but the behaviour of the well in terms of flow rate will
be reproduced inaccurately.
The third disadvantage of using accumulated production occurs when there is a sharp
change in the oil flow rate at the end of the well’s operation period. A typical example
is some intensification events, such as hydraulic fracturing, to enhance fluid inflow to
the well. If the loss function uses accumulated production, then against the large value
of this indicator in the late period of well operation, local changes in flow rate will not
significantly contribute to the OF, leading to the disregard of matching to this sharp local
change in flow rate.
When only two fluids are defined mathematically, one component should ensure conver-
gence to the second, as control of the model is based on liquid rate (oil + water). However,
this is not always achieved for the following reasons. When it is impossible to provide fluid
flows at the current reservoir productivity and minimum bottomhole pressures, control
based on fluid flow switches to control based on the specified bottomhole pressure.
Including watercut in the OF is undesirable because this parameter is derived and con-
tains combined errors from flow rate measurements. Additionally, the option with flow
rates is more flexible than watercut, allowing for different measurement errors for oil and
water. Including the watercut component in the OF when flow rate components are present
will double-account for flow rate discrepancies, shifting the focus away from the numer-
ical contribution of other components, such as bottomhole pressure. This, in turn, will
negatively affect the overall criteria adaptation process.
In general, during the HM process, more attention is paid to the convergence of oil pro-
duction rates than bottomhole pressures.

3.7.2 Static loss function

Petrophysical properties, such as porosity and permeability, are crucial in determining a
rock’s ability to store hydrocarbons and facilitate fluid flow. These properties are typically
measured in laboratories using rock samples obtained from cores or outcrops. After that,
these measurements are propagated along the wellbore by correlation with well logs, such
as density, neutron, sonic, and nuclear magnetic resonance. This data is then interpolated
to an inter-well space of an entire volume of a field by the various geostatistical approaches
with the seismic data and sedimentological concept (Ringrose et al., 2015).
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Since “direct measurements” of properties are conducted at well locations, the obtained
data have a lower uncertainty level than the inter-well space. Therefore, the second term
of the OF, equation 3.37 (𝐿𝑜𝑠𝑠𝑠𝑡𝑎𝑡𝑖𝑐), should control that the generated values of porosity
and permeability at well locations do not contradict the results of interpretations of well
log measurements.

𝐿𝑜𝑠𝑠𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑤𝑠

𝐶
∑

𝑐=1

𝑀
∑

𝑖=1

1
𝑁

𝑁
∑

𝑛=1

(

𝑦𝑜𝑏𝑠𝑐,𝑖,𝑛 − 𝑦
𝑠𝑖𝑚
𝑐,𝑖,𝑛

)2 (3.40)

Where, 𝑦𝑜𝑏𝑠 - well logs observed, 𝑦𝑠𝑖𝑚 - well logs simulated, 𝑁 - number of grid blocks
along the wellbore, 𝑀 - number of wells, 𝐶 - number of log types (porosity, permeability
due to well logs ).

3.7.3 Realism loss function

The last component of the loss function, equation 3.37 (𝐿𝑜𝑠𝑠𝑟𝑒𝑎𝑙𝑖𝑠𝑚), should be responsible
for the quality of the generated grids of porosity and permeability in the inter-well space. In
the concept of this thesis, the quality of the generated objects implies that they correspond
to the geological concept initially established by the geologist.

Figure 3.17: If we pick a sample 𝑧 ( ), from a
region with high metric value 𝐙𝑓 (𝑧), GWAE De-
coder will reproduce an object of high geological
reliability. Otherwise, the sample 𝑧 ( ) from re-
gions of low density, which provide low-quality
geological realisation.

It is assumed that during the training of
GWAE, the training dataset consists only
of geologically realistic scenarios, which
means the neural network is trained to re-
produce the underlying geology correctly.
However, it is worth noting that the LS (),
which is the “source” of geological realisa-
tions, has a probabilistic structure. There-
fore, if we sample from low-probability ar-
eas, the reconstructed geological realisa-
tions may contain disrupted geology. For
us, this means that the optimiser should re-
ceive information about the probability of
occurrence of a particular realisation. In this work, I replaced the probability estimation
with an estimation of the density of the LS 𝐙𝑓 (𝑧) from equation 3.34, which was presented
in the Section 3.6: Inner Geometry of a Latent Space.
Thus, as the third term, the loss function will receive an estimation of density 𝐙𝑓 (𝑧). If this
estimation starts to increase, it means that the optimiser is starting to sample from areas of
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the hidden space with low density, i.e., areas with few training samples, indicating a low
probability of occurrence of such a realisation, figure 3.17. As the estimation of density
decreases, the probability of occurrence of such a geological realisation will also decrease.
It is worth noting that during the description of experiments in the following chapters, var-
ious modes of testing the performance of the Objective Function are not considered, such
as the prevalence of static information over dynamic information (i.e. a small number of
historical measurements), etc., as this is not the subject of the current research. However,
the conducted experiments have shown that the static and dynamic components of the OF
work coherently, which is logical since well-logging data is one of the most critical indi-
cators for subsequent extraction. Meanwhile, the third component operates more against
it as it imposes constraints on the optimization process, restricting the search exclusively
to the zone of geologically realistic scenarios.

3.7.4 Optimisation process

Thus, the process of AHM includes an optimiser (CMA-ES) that, based on the three-
component loss function, takes the next step to search for the optimum at each iteration.
The optimum in this case involves minimising the production error for each well, well logs
error, and while maintaining geological realism.
It is worth noting that to evaluate the production error, it is necessary to perform a sim-
ulation, which itself is computationally expensive. A simulation is not required to assess
well logs error; only the generated by GWAE property graphs are needed, which is fast.
However, an implicit dependence exists between production and geology. It can be argued
that if we find the optimum for the static component of the loss function, we will approach
the optimum for the dynamic component. This results in significant computational re-
source savings. Furthermore, once we have completed the optimisation process for the
static component, we can perform fine-tuning and include the dynamic error component
in the loss function, thereby controlling all three components, figure 3.18.
The third component of the loss function should be involved throughout the optimisation
process, as it acts as a limiting factor (regulariser) that prevents the optimiser from sliding
into the space of unlikely geological realisations, ensuring geological realism.
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Figure 3.18: Two-stage optimisation process. Left: CMA-ES seeks optimum subspace for static
properties by minimising 𝐿𝑜𝑠𝑠𝑠𝑡𝑎𝑡𝑖𝑐 component. Centre: in the region of static optimum ( ) CMA-
ES switch on the 𝐿𝑜𝑠𝑠𝑑𝑦𝑛𝑎𝑚𝑖𝑐 component to find the total optimum ( ), for static and dynamic
components of the loss function. 𝐿𝑜𝑠𝑠𝑟𝑒𝑎𝑙𝑖𝑠𝑚 is a regulariser for the optimisation process.

3.8 Tools for analysing multidimensional spaces
Топология! Стратосфера человеческой
мысли! В двадцать четвёртом столетии
она, может быть, и понадобится
кому-нибудь, а пока. . . А пока. . . a

aTopology belonged to the stratosphere of
human thought. It might conceivably turn out to
be of some use in the twenty-fourth century, but
for the time being...

In the first cycle
A. Solzhenitsyn

In the case of GWAE latent space  is always too large to conduct visual analysis and
draw any conclusions about its inner structure. That is why we need some dimensionality
reduction techniques, which are used to reduce the number of dimensions in a dataset
while preserving its important structure or relationships.
Different dimensionality reduction methods allow for extracting information of various
kinds. There is no universal method that would comprehensively analyse multidimen-
sional data. Therefore, a researcher should have a set of such algorithms in their arsenal.
There are quite a few dimensionality reduction methods (Holmström, 2008; Keim, 2002;
Tang et al., 2016; Tierny, 2018; Y. Wang et al., 2021), but I will be using some of the most
widely used ones in practice.
In this work, I am using algorithms such as Principal Components Analysis (Jolliffe, 2002),
t-Distributed Stochastic Neighbour Embedding (t-SNE) (Maaten et al., 2008), as well as
Topological Data Analysis (TDA) (Tierny, 2018).
These techniques are commonly used for exploratory data analysis, visualisation, and fea-
ture extraction. They can help to understand the underlying structure of complex datasets
and reduce the computational complexity of subsequent analyses. However, it’s important
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to note that while PCA is a deterministic technique, t-SNE is stochastic and can produce
different results with different random seeds.
The basic approach for analysing multivariate data is ortogonal component analysis such
as Principal Components Analysis and Multidimensional Scaling (Céline Scheidt, 2018).
PCA and MDS are both powerful techniques in the field of multivariate analysis that are
commonly used for dimensionality reduction and data visualisation. PCA is a linear tech-
nique that projects the data onto a lower-dimensional space by finding the principal com-
ponents, which are new uncorrelated variables that capture the maximum variance in the
data. It helps to identify the most important features or patterns in the data. MDS is a
technique used to visualise the similarity or dissimilarity between objects or cases based
on a distance or dissimilarity matrix. MDS aims to represent the relationships between
objects in a lower-dimensional space, typically two or three dimensions, while preserving
the original pairwise distances as much as possible.
On the other hand, t-SNE is a non-linear technique that focuses on preserving the local
structure of the data. It converts similarities between data points into probabilities and
minimises the divergence between them in the high and low-dimensional space. This
allows for better visualisation of clusters or groups within the data.
Topological Data Analysis is a mathematical framework that aims to analyse and under-
stand complex datasets’ underlying shape and structure. It combines concepts from al-
gebraic topology, computational geometry, and machine learning to extract topological
features from data. TDA focuses on capturing the global and local geometric properties
of data, such as clusters, holes, loops, and connectivity, which may not be easily captured
by traditional statistical methods or linear dimensionality reduction techniques like PCA.
It provides a way to analyse the shape and structure of data in a robust and mathematically
rigorous manner.

3.8.1 Principal Components Analysis

The Principal Components Analysis is a statistical technique used to reduce the complexity
of multidimensional data by identifying patterns and relationships among variables. PCA
transforms the original variables into a new set of variables called principal components,
which are linear combinations of the original variables. These principal components cap-
ture the maximum amount of variation in the data with minimum redundancy. It was
proposed by Pearson (1901) and then further developed by the American economist and
statistician Hotelling (1933).
From a mathematical point of view, PCA is an orthogonal linear transformation that projects
data from its original feature space to a new space with reduced dimensionality. During
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this procedure, the primary axis of the newly established coordinate system is identified to
maximize the variance of the data along that axis. The second axis is then constructed or-
thogonally to the first, aiming to maximize the variance among the remaining possibilities,
and this process continues. The initial axis is referred to as the first principal component,
followed by the second principal component, and so on.

Figure 3.19: The concept of di-
mensionality reduction by PCA

Figure 3.19 shows the reduction of dimensionality of
the original 2-dimensional space (𝑋1, 𝑋2) using PCA to
a 1-dimensional space. The first principal component,
𝑃𝐶1, aligns with the direction of the greatest variance
observed in the scatter plot of points derived from the
original dataset.
In figure 3.19, the projection of the data variance onto
the axis of the first principal component 𝐷𝑃𝐶1 is greater
than its projections onto the original axes 𝐷𝑋1 and 𝐷𝑋2,
but less than the total variance. In other words, the en-
tire range of data variance could not be captured solely
through the first principal component. Therefore, in the case of multidimensional data,
the second, third, and so on principal components are constructed until they collectively
capture all the variance.
Hence, the concept of PCA is that each principal component corresponds to a specific frac-
tion of the overall variance in the original dataset. Consequently, variance, as an indicator
of data variability, can signify the degree of informativeness within the data.
Variability can be substantial, minimal, or even non-existent within specific axes of the
initial feature space. The underlying assumption is that a lower variance along an axis
corresponds to a less impactful contribution from the variable associated with that axis.
Consequently, eliminating such an axis (i.e., excluding the variable from the model) makes
it feasible to diminish the problem’s dimensionality without sacrificing a significant por-
tion of the data’s informativeness.
Therefore, the task of PCA is to construct a new feature space of lower dimensionality,
where the variance between the axes is redistributed in such a way as to maximise the
variance along each of them. To do this, the following sequence of actions is performed
(I. Goodfellow et al., 2016):

• The overall variance of the initial feature space is computed, and this task involves
more than just adding up individual variances because, in many cases, the variables
are not independent. Consequently, it is essential to sum up the covariances among
variables derived from the covariance matrix.
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• Computation of eigenvectors and eigenvalues of the covariance matrix. These com-
ponents define the directions of the principal components and quantify the respective
amounts of variance.

• Dimensionality reduction is performed. The covariance matrix’s diagonal elements
represent the variance in the original coordinate system, while its eigenvalues indi-
cate the variance in the new system. To determine the proportion of variance for
each principal component, one can divide the variance linked to each component by
the total variance across all components. After that, the least informative principal
components are discarded.

It’s important to note that direct selection of the number of components may not consis-
tently produce favourable outcomes. This is because some variance in the data might be
due to noise rather than informative components. Hence, practical approaches often rely
on specific criteria, like the Kaiser criterion (Kaiser, 1960) or the broken stick criterion,
and so on, to determine the appropriate number of components (Saccenti et al., 2015).
The main limitations of the principal component analysis method are (Céline Scheidt,
2018):

• The inability to interpret the components in a meaningful way as they combine the
variance from multiple original variables.

• The method does not account for categorical variables, as it is designed for con-
tinuous data only. Categorical variables need to be preprocessed or transformed
before applying PCA, which can introduce additional complexity and potential loss
of information.

• PCA assumes linearity between variables, which may not hold true in all cases.
Nonlinear relationships between variables can lead to inaccurate results.

• The method assumes that the data is normally distributed, which may not be the case
in real-world datasets. Non-normal data can lead to biased results and inaccurate
interpretations of the components.

• PCA is sensitive to outliers in the data. A single outlier can significantly influence
the results and distort the interpretation of the components.

• The method requires a large sample size to capture the underlying structure of the
data accurately. With a small sample size, PCA may be unable to reduce dimension-
ality or provide reliable results effectively.

• The method assumes no missing values in the dataset. Missing values can introduce
bias and affect the accuracy of the results obtained from PCA.
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3.8.2 t-Distributed Stochastic Neighbour Embedding

The classic Stochastic Neighbour Embedding (SNE) was proposed by Hinton et al. (2002).
The 2002 article describes several “tricks” that allowed for simplifying the process of
finding global minima and improving visualisation quality. The t-SNE algorithm, also
considered a feature learning method, was published by Dutch researcher Maaten et al.
(2008). One replaced the normal distribution with the Student’s t-distribution for low-
dimensional data.
First, let’s briefly describe the classical SNE algorithm. We have a dataset 𝑧with points de-
fined by a multidimensional variable with a dimensionality significantly larger than three.
We need to obtain a new variable that exists in a two-dimensional or three-dimensional
space, preserving the original data’s structure and patterns as much as possible. SNE starts
by transforming the multidimensional Euclidean distance between points into conditional
probabilities that reflect the similarity between points. Mathematically, this can be repre-
sented as follows:

𝑝𝑗|𝑖 =
𝑒𝑥𝑝(−||𝑧𝑖 − 𝑧𝑗||2∕2𝜎2

𝑖 )
∑

𝑘≠𝑖 𝑒𝑥𝑝(−||𝑧𝑖 − 𝑧𝑘||2∕2𝜎2
𝑖 )

(3.41)

This equation shows how close a point 𝑧𝑗 to 𝑧𝑖 under a Gaussian distribution around 𝑧𝑖
with a given deviation 𝜎. 𝜎 will be different for each 𝑧. It is chosen so that points in
denser regions have smaller variances. To achieve this, an estimation of perplexity is
used, equation 3.42:

𝑃𝑒𝑟𝑝(𝑃𝑖) = 2𝐻(𝑃𝑖) (3.42)
𝐻(𝑃𝑖) = −

∑

𝑗
𝑝𝑗|𝑖𝑙𝑜𝑔2𝑝𝑗|𝑖 (3.43)

Where 𝐻(𝑃𝑖) - Shannon entropy in bites. Perplexity can be interpreted as a smoothed
estimate of the effective number of “neighbours” for a point 𝑧𝑖. It is used as a hyperpa-
rameter in the method. The authors recommend using a value in the range of 5 to 50. 𝜎 is
determined for each pair of 𝑧𝑖 and 𝑧𝑗 using a binary search algorithm (Williams, 1976).
Let define �̂� as a 2 or 3-dimensional representation of 𝑧.

𝑞𝑗|𝑖 =
𝑒𝑥𝑝(−||𝑧𝑖 − 𝑧𝑗||2)

∑

𝑘≠𝑖 𝑒𝑥𝑝(−||𝑧𝑖 − 𝑧𝑗||2)
(3.44)

𝜎 = 1∕
√

2 (3.45)

If the points 𝑧𝑖 and 𝑧𝑗 accurately model the similarity between high-dimensional source
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points 𝑧𝑖 and 𝑧𝑗 , then the corresponding conditional probabilities 𝑝𝑗|𝑖 and 𝑞𝑗|𝑖 will be equiv-
alent. As an obvious measure of the quality with which 𝑞𝑗|𝑖 reflects 𝑝𝑗|𝑖, the authors use
the KL divergence or distance. SNE minimises the sum of such distances for all map-
ping points using gradient descent, equation 3.47. The loss function for this method is
determined by the equation 3.46.

𝐷𝑖𝑠𝑡𝑆𝑁𝐸 =
∑

𝑖
𝐾𝐿(𝑃𝑖||𝑄𝑖) =

∑

𝑖

∑

𝑗
𝑝𝑗|𝑖𝑙𝑜𝑔

𝑝𝑗|𝑖
𝑞𝑗|𝑖

(3.46)
𝜕𝐷𝑖𝑠𝑡𝑆𝑁𝐸

𝜕𝑧𝑖
= 2

∑

𝑗
(𝑝𝑗|𝑖 − 𝑞𝑗|𝑖 + 𝑝𝑖|𝑗 − 𝑞𝑖|𝑗)(𝑧𝑖 − 𝑧𝑗) (3.47)

The authors propose the following physical analogy for optimisation: All mapping points
are connected by springs. The stiffness of the spring connecting points 𝑖 and 𝑗 is deter-
mined by the similarity of two points in the multidimensional space  and points in the
mapping space ̂. In this analogy, the gradient is the resulting force acting on a point in
the mapping space ̂. If the system is “released”, it will eventually reach equilibrium,
which will be the desired distribution. Algorithmically, finding equilibrium is suggested
by taking into account moments.
The loss function is the main difference of t-SNE. First, t-SNE has a symmetric form of
similarity in the high-dimensional space and a simpler gradient variant. Second, instead
of using a Gaussian distribution for points in the mapping space, a Student’s t-distribution
with heavy tails facilitates optimisation and solves the sparsity problem.
As an alternative to minimising the sum of Kullback-Leibler divergences between condi-
tional probabilities 𝑝𝑗|𝑖 and 𝑞𝑗|𝑖, it is proposed to minimise a single divergence between
the joint probability 𝑃 in the high-dimensional space and the joint probability 𝑄 in the
mapping space.

𝐷𝑖𝑠𝑡𝑡−𝑆𝑁𝐸 = 𝐾𝐿(𝑃 ||𝑄) =
∑

𝑖

∑

𝑗
𝑝𝑖𝑗𝑙𝑜𝑔

𝑝𝑖𝑗
𝑞𝑖𝑗

(3.48)

𝑝𝑖𝑗 = 𝑝𝑗𝑖 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑛
(3.49)

𝑞𝑖𝑗 = 𝑞𝑗𝑖 =
(1 + ||𝑧𝑖 − 𝑧𝑗||2)−1

∑

𝑘≠𝑙(1 + ||𝑧𝑘 − 𝑧𝑙)||2)−1
(3.50)

𝑝𝑖𝑖 = 𝑞𝑖𝑖 = 0 (3.51)

And the gradient:
𝜕𝐷𝑖𝑠𝑡𝑡−𝑆𝑁𝐸

𝜕𝑧𝑖
= 4

∑

𝑗
(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑧𝑖 − 𝑧𝑗)(1 + ||𝑧𝑖 − 𝑧𝑗||2)−1 (3.52)
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Returning to physical analogues, the resulting force, defined by equation 3.52, will sig-
nificantly contract the points �̂� for close points 𝑧 of multidimensional space and repulse
remote ones.
The search for equilibrium is proposed to be done taking into account the moments, equa-
tion 3.53:

�̂� 𝑡 = �̂� 𝑡−1 + 𝜂
𝜕𝐷𝑖𝑠𝑡𝑡−𝑆𝑁𝐸

𝜕�̂�
+ 𝛼(𝑡)

(

�̂� 𝑡−1 − �̂� 𝑡−2) (3.53)

t-SNE has three potential weaknesses (Maaten et al., 2008):
• Regarding dimensionality reduction, it is unclear how t-SNE will perform when

reducing data to higher dimensions (𝑑 > 3) as it is primarily evaluated for data
visualisation. The behaviour of t-SNE in two or three dimensions cannot be directly
extrapolated due to the heavy tails of the Student-t distribution to higher dimensions.

• The curse of intrinsic dimensionality (Bengio, 2009) poses a challenge for t-SNE as
it relies on the local properties of the data. The assumption of local linearity may
be violated in datasets with high intrinsic dimensionality and a varying underlying
manifold.

• Unlike other dimensionality reduction techniques with convex cost functions, t-
SNE’s cost function is non-convex. This leads to the need to choose optimisation
parameters, and the resulting solutions may vary based on these choices and initial
random configurations.

Below is a set of steps on how t-SNE works:

Algorithm 2: t-SNE dimensionality reduction
Data: {𝑧}
Input: 𝑛𝑖𝑡𝑒𝑟, 𝑃𝑒𝑟𝑝, 𝜂, 𝛼(𝑡)
Result: {�̂�}
estimation of 𝑝𝑗|𝑖 eq.3.41;
set 𝑝𝑖𝑗 with eq.3.49;
initialise �̂�0 = {�̂�} =  (𝜇 = 0, 𝜎 = 1𝑒 − 4);
for 𝑡← 1, 𝑇 do

estimation of 𝑞𝑖𝑗 with eq. 3.50 ;
estimation of the gradient by 3.52 ;
set �̂� 𝑡 with 3.53 ;

end
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3.8.3 Topological Data Analysis

Topology is the science of data shape. Studying the topology of an object means under-
standing its geometry and structure at a certain level of abstraction without dimensionality
reduction itself.
Topological Data Analysis allows for the exploration of complex, multidimensional, noisy
data and extracting important properties that provide insight into the shape of the object
being studied by Carlsson (2009) and Edelsbrunner et al. (2000). TDA could effectively
capture the intrinsic geometry of complex data sets. In the case of geological representa-
tions, latent spaces encode high-dimensional relationships between geological represen-
tations. TDA can reveal the underlying topological structures that may not be apparent
through traditional methods.
The tool used for TDA, which computes topological features of objects of different na-
ture, is called Persistent Homology (Biasotti et al., 2008). Simplicial Complexes are com-
monly used to represent multidimensional data clouds. A Simplex can represent different
elements, such as a single data point (0-simplex), a line connecting two data points (1-
simplex), a triangle (2-simplex), and so on. Generally, a subset of (𝑘 + 1) data points is
called a k-simplex. A simplicial complex is a collection of these simplices. Figure 3.20
illustrates some examples of k-simplices and a simplicial complex.

Figure 3.20: Example of 0-simplex ( ), 1-simplex ( ), 2-simplex ( ), 3-simplex ( ), and
simplicial complex ( )

Betti numbers are used to describe topological properties, where 𝛽0 represents the number
of connected components, 𝛽1 represents the number of 1-D holes, 𝛽2 represents the number
of 2-D voids, and so on, figure 3.21.
One of the most common topological representations of data through the connected com-
ponents is the Persistence Homology Diagram (Fabio et al., 2015). Persistent homology is
a tool that captures the topological signature of a data cloud by gradually increasing spa-
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tial resolution and observing the appearance and disappearance of loops or holes in each
dimension. The topological characteristics of the studied space are represented as a set of
points on the diagram, where the moments of appearance of topological “holes” are plotted
on the x-axis, and the moments of their disappearance are plotted on the y-axis. With such
a diagram, we can understand which characteristics are irrelevant to the original space,
as their stability or lifespan (the difference between the moment of disappearance and the
moment of appearance) is small compared to the stability of other topological character-
istics. We can also identify which characteristics have high stability and are fundamental
in shaping the space.

Figure 3.21: Betti numbers for a
single point, a circle, a sphere, and
a torus

A persistent diagram can be considered for different di-
mensions (𝐻0, 𝐻1, etc.). For 𝐻0, we track the time
of appearance and disappearance of connected compo-
nents, which tells us about the stability in dimension 0.
For 𝐻1, we follow the stability of the appearance and
disappearance of loops. 𝐻 of dimension 𝑛 can be de-
scribed as the appearance and disappearance of a hyper-
sphere that encloses multidimensional voids, figure 3.22.
There are many examples of using this approach to anal-
yse multidimensional data. In Gholizadeh et al. (2018),
it is shown how to extract topological signatures in the text using persistent homology to
utilise these signatures for text classification. Pereira et al. (2015) presented the usefulness
of the TDA in the clustering problem of time series and spatial data in biology, medicine,
and ecology by the Betty numbers.

Figure 3.22: Example of persistence homology diagram. Left: 3-dimensional data {𝑧} ∈  (
). Right: Persistence homology diagram for 𝐻0 ( ), 𝐻1 ( ) and 𝐻2 dimensions ( ). Noise or

short-living components are in faint colours, and long-living components are bright. For𝐻0, there
are two distinct bodies because we can see one point on the persistence homology diagram distant
from the birth-death diagonal ( ). This is the moment when two sets of points form a single one
( ). For 𝐻1, we can see two bright points ( ), this indicates two stable circle bodies. For 𝐻2,
we can see only short living spheres, which indicates no distinct bodies (noise)

Thus, visualising multidimensional spaces using persistent diagrams combined with Betti

87



3.9. CONCLUSION

numbers allows us to create a particular story of what is happening in the multidimensional
space. In further experiments, persistent diagrams will be utilised to identify hidden pat-
terns that help understand the relative structure of geological representations within the
latent space (Moon et al., 2019). The primary constraint in topology data analysis is the
significant amount of computing resources needed (Cheng, Liang, 2020), so to speed up
the process of TDA metrics computation, we will randomly pick points from {𝑧} to de-
scribe and analyse the whole space .

3.9 Conclusion

In this chapter, I have introduced the fundamental technologies employed throughout the
applications in the further chapters. I have described the essence of Variational Autoen-
coders, justified why their basic configuration is sub-optimal for geological modelling
under conditions of uncertainty, and transitioned to the Wasserstein Metric and Graph Ar-
chitecture for autoencoders. Next, I presented the optimiser (CMA-ES) along with three
components Objective Function that will be used to solve the history matching problem.
Then, issues related to determining the dimensionality of the latent space were discussed,
which can be crucial in the context of HM through the LS search. The final sections of
this chapter were dedicated to more abstract concepts, such as interpolation in nonlinear
spaces and topological analysis of multidimensional spaces. These approaches provide a
deep understanding of how to work with geological representations in hidden space. They
also enable the analysis of the structure of hidden space, which is crucial when dealing with
generative networks as relatively new tools in geoscience. It can already be asserted that
the concept of distance, and therefore similarity, of geological representations in hidden
space is non-trivial. This, in turn, imposes certain limitations on optimisation processes,
directly influencing the geological modelling and history matching processes using gen-
erative networks. Introducing these techniques is necessary for a more in-depth analysis
of the performance of GWAE.
The key principle concerns traditional Convolutional Neural Networks, which have lim-
itations when applied to non-Euclidean geological data. Geological models often have
complex, non-regular internal structures that don’t fit well with CNNs. To address this,
we discussed the transition from Euclidean CNNs to non-Euclidean data representations,
specifically using graphs. This approach enables more advanced graph convolutions, mak-
ing it possible to describe irregular geological structures and their variation by representing
geological models as graphs with nodes containing reservoir properties and edges repre-
senting structural features of the geological object.
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Chapter 4

Modelling uncertainty and datasets
construction process

The initial step in geological modelling using generative neural networks involves creating
a set of prior subsurface models based on existing information. The prior ensemble is
used to train the model and generate the corresponding data and prediction variables. The
process of generating the training set with the target answers involves forward modelling,
e.g. reservoir flow simulation, geophysical simulation, or simpler static operators.
The next common step is pre-processing, where the prediction and data variables are trans-
formed via Encoders into lower dimensional latent space or appropriate distributions that
meet the necessary assumptions, e.g. Gaussianity or independence of features.
In a typical subsurface system, the model variables are parameterised in a specific manner,
such as using a grid or a set of objects with defined characteristics. The prior distribution
of these model variables is often referred to as a “geological scenario” (Céline Scheidt,
2018). The question then becomes whether the collection of information and extraction
of parameter values accurately produce realistic priors.
To describe the prior geological scenario uncertainty explicitly, it is necessary to under-
stand the sedimentary systems based on physical principles rather than solely relying on
information principles. Ideally, this involves stating all possible configurations of system
architectures and their frequencies (represented as a probability density). But in reality,
it is impossible to cover, so it is important to prioritise and focus on the most relevant
and significant configurations for further decisions. Sensitivity analyses and validation
against newly observed data can further help in assessing the robustness and reliability
of the chosen prior. This probability density does not necessarily follow a Gaussian or
uniform distribution. Therefore, the question arises: What is the probability density for
geological systems, and how can it be represented?
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There are a lot of benchmark datasets that exist and are used for data assimilation or op-
timisation, e.g. Stanford VI (Castro et al., 2005), COSTA (Costa Gomes et al., 2022),
PUNQ S3 (Cutts, 1991) etc. However, the internal architecture of the dataset should al-
low to test a specific hypothesis and get an answer about the applicability of a particular
approach. This is why the present work required the creation of a set of in-house datasets.
This section describes the process of building training datasets and prior ensembles, based
on which further training of GWAE and testing of the generative technologies described
in the previous chapter will be performed. To conduct the experiments, I created three
training datasets that will be used throughout this thesis.

i The first dataset (FLUVIAL) consists of a set of three-dimensional models of poros-
ity and permeability properties of a simplified channelised synthetic cube of proper-
ties. The main uncertainty of this dataset is the uncertainty in the location of channel
bodies, their quantity, and channel parameters.

ii The second dataset (STRUCTURAL) represents structural uncertainty in a simplified
synthetic reservoir setting, namely the location of the fault and block displacements
(throw) along it.

iii The third dataset (BRUGGE) consists of multiple realisations of the semi-synthetic
full-field Brugge benchmark reservoir model, which consists of four stratigraphic
zones with different geological scenarios and depositional conditions.

The two first datasets represent relatively simple models of deposits that allow testing
specific generative capabilities of GWAE under geological and structural uncertainty. Ad-
ditionally, all these datasets have uncertainty in petrophysical parameters such as porosity,
permeability, and their dependence. A simplified fluvial setting was chosen as the base
geological concept, allowing for visual quality control of generated realisations. To test
the generative capabilities of GWAE in more realistic conditions, the third dataset was
created, which is closer in complexity to a real deposit.
Each of these datasets aims to answer the questions:

i Is it possible to create a generative model that could combine geological uncertainty
of different nature?

ii Which configurations of GWAE are the most promising?
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4.1. SET UP FOR VARIOUS GEOLOGICAL SCENARIOS CASE STUDY
(FLUVIAL)

4.1 Set up for various geological scenarios case study (FLU-
VIAL)

A prior set of models for training GWAE should include the following features: various
geological scenarios and the spatial distribution of petrophysical properties. These scenar-
ios should be explicit enough to allow for visual verification of geological realism during
result analysis but challenging due to geological bodies’ complex connectivity and geom-
etry. Therefore, a fluvial geological setting was chosen.
The concept of the training dataset is presented in figure 4.1. It is worth noting that the
different geological scenarios consist of a scenario with a single channel and a scenario
with two channels. The channels’ parameters for each scenario vary within different un-
certainty ranges, table 4.1.

Figure 4.1: Settings of the channelised synthetic dataset. Two distinct geological scenarios: single
and double channels are considered

The goal of creating such a dataset is to test the ability of the generative algorithm to work
with geological representations in a wide enough space of geological scenario uncertainty.

Table 4.1: Table of parameters for FLUVIAL dataset construction
Scenario Single Double

Number of channels one two
Width [300; 500] [300; 500]

Thickness [10; 20] [10; 20]
Wavelength [1000; 2000] [500; 1000]
Amplitude [0; 300] [500; 900]
Orientation 90 120

It is worth noting that the absolute values of the ranges that determine the geometry of the
channels are not as important for the validation of GWAE generative capability as the fact
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that a dataset describing a different number of channels can be perceived as prior infor-
mation about the reservoir. The full-field BRUGGE case will consider more geologically
realistic reservoir parameters.
The petrophysical relationship between porosity and permeability was defined by a deter-
ministic function with some slope variation and bias to provide some uncertainty. This is
one of the critical parameters to impact the flow.
The following figure 4.2 shows examples of implementing a porosity dataset for a single
(left column) and double channels (right column). It is important to note the imbalance
in the volumes of channel and non-channel facies. There is also a clear spatial correlation
in the direction of the channels. Additionally, implementations marked with reproduce
only one channel. This can be explained by the stochastic nature of the object modelling
process, which essentially merged two channels into one.
Upon closer examination, it can be observed that each implementation lacks the first cell.
The purpose of this irregular structure is to disrupt the grid’s regularity. As mentioned
earlier, standard convolutional networks cannot work with such data. On the other hand,
graph neural networks should be able to process the data since regularity is not required.
This approach could be used as a geological simulator capable of generating only "useful"
fields for property modelling. Currently, the ACTNUM parameter is used for this pur-
pose, providing information to the flow simulator about which cells require calculations
(ACTNUM = 1) and which do not (ACTNUM = 0), thereby reducing computation time.
Therefore, in the case of geological modelling using a graph approach, there is no need to
create property fields with inactive cells.
The distributions of porosity and permeability parameters are shown in figure 4.3.
The petrophysical relationship between porosity and permeability follows a “standard” ex-
ponential relationship presented in figure 4.4. It should be noted that the uncertainty range
for the entire dataset is quite broad, which can be attributed to the inherent uncertainty in
the petrophysical relationship of the parameters. However, each individual dataset reali-
sation has a much smaller variability, as illustrated in figure 4.5.
Therefore, a properly trained GWAE should adhere to the following conditions: preserving
the statistical distributions of porosity and permeability properties, maintaining the petro-
physical relationship between the properties, and preserving the correct spatial geometry
for the channel facies regardless of the number of channels.
A commercial Petrel subsurface software (𝑆𝐿𝐵𝑇𝑀 ) was used to create the set of mod-
els. The process of creating models for the training dataset was structured as follows.
Stochastic Object Modelling was chosen as the geological modelling process, as it is the
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Figure 4.2: Examples of FLUVIAL synthetic dataset: a single channel scenario (left) vs the dou-
ble channel scenario (right) are considered. highlight realisations in which only one channel is
visually observed, but in reality, two channels merged into one due to the stochastic component of
the object modelling algorithm
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Figure 4.3: Porosity and permeability distributions for the entire dataset. Right: porosity, left:
permeability.

Figure 4.4: Porosity/Permeability petrophysical relationship for the channel facie for the entire
ensemble of models. Right: y-axis in millidarcy, left: the same relationship, but the y-axis in
log(millidarcy).

Figure 4.5: Porosity/Permeability petrophysical relationship for the channel facie for some random
model samples from prior. Right: y-axis in millidarcy, left: the same relationship, but the y-axis
in log(millidarcy).
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most preferable for modelling fluvial systems. This algorithm’s operation principle was
described in Chapter 2: Review of recent advances in generative deep learning and
problem statement. Two workflows were implemented to create the dataset.
The workflow simulates the propagation of channel/non-channel facies in 3D volume. In
addition to the spatial distribution of channels, their parameters were also varied, table
4.1.
The workflow results in porosity and permeability grids (*.GRDECL format) to be used
further in flow simulation. Five thousand realisations were created, 2,500 for each scenario
with one or two channels. The model dimension is 𝑥 = 16, 𝑦 = 12, 𝑧 = 10, where
𝑑𝑥 = 𝑑𝑦 = 50𝑚 and 𝑑𝑧 = 1𝑚, which means that the dimension of the search space for
optimisation is 𝑥 ⋅ 𝑦 ⋅ 𝑧 ⋅ 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑃 𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 = 3840, as the optimisation algorithm
needs to find values for porosity and permeability for each cell.

Figure 4.6: Well place-
ment scheme

In addition to the prior dataset of static porosity and permeabil-
ity properties, a flow simulation model has been prepared for
conducting simulation experiments. It is expected that the main
structure of the flow model will remain unchanged while the prop-
erty cubes will be substituted, thereby altering the dynamic re-
sponse. The model consists of two phases: oil/water. It was cre-
ated using a line drive scheme, with one line of producers in the
middle and two lines of injectors, figure 4.6. This well placement
was chosen due to the uncertain position of a channel. The well performance calculation
is set for 60 time steps, each time step representing a month. The main parameters of the
flow simulation model are presented in the table 4.2.

95



4.2. SET UP FOR STRUCTURAL UNCERTAINTY CASE STUDY (STRUCTURAL)

Table 4.2: Flow simulation parameters
Parameter Value Unit

𝑃𝑖𝑛𝑖𝑡 240 bar at OWC
𝑃𝑝𝑟𝑜𝑑 45 bar
𝑃𝑖𝑛𝑗 330 bar
𝑁𝑤𝑒𝑙𝑙𝑠 9 −
OWC 2460 𝑚𝑒𝑡𝑒𝑟

Water viscosity (𝜇𝑤) 0.40 𝑐𝑃
Oil viscosity (𝜇𝑜) 3.3 𝑐𝑃

Water density (𝜌𝑤) 1020 𝑘𝑔∕𝑚3

Oil density (𝜌𝑜) 875 𝑘𝑔∕𝑚3

Connate Water Saturation
(SWL) −0.048 ⋅ ln(𝑝𝑒𝑟𝑚) + 0.5 𝑓𝑟𝑎𝑐

Critical Water Saturation
(SWCR) 1.1⋅ SWL 𝑓𝑟𝑎𝑐

Initial Water Saturations
(SWATINIT) −0.18 ⋅ ln(𝐽 ) + 0.57 𝑓𝑟𝑎𝑐

Scaled Critical Oil-in-Water
Saturations (SOWCR) if(SWATINIT=1, 0, 0.25) 𝑓𝑟𝑎𝑐

Maximum Water Saturation
(SWU) if(SWATINIT=1, 1, 1-SOWCR) 𝑓𝑟𝑎𝑐

4.2 Set up for structural uncertainty case study (STRUC-
TURAL)

One of the key features of graph neural networks is their ability to work with unstructured
data. In the case of geological modelling, this can be used to simulate structural uncer-
tainty. The literature review has shown that dealing with structural uncertainty is quite a
complex process and generally does not allow for the simultaneous consideration of both
property and structural uncertainty. However, structural uncertainty is often crucial for ac-
curate flow modelling, as structural unconformity directly affects the dynamic response,
disrupting reservoir connectivity.
Thus, the second dataset should help test the hypothesis that GWAE can generate geolog-
ical models considering structural and geological uncertainty as a unified process.
Figure 4.7 illustrates the concept of a STRUCTURAL dataset. As before, the geological
foundation is represented by simplified implementations of fluvial deposits with the addi-
tion of a fault that divides the entire model into two blocks. The dataset has the following
key features: the shape and spatial location of the channel (always one), the fault’s spatial
position and the blocks’ vertical displacement relative to each other along the fault. The
complete set of uncertainty embedded in the dataset is presented in the following table
4.3.
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Figure 4.7: Settings of the STRUCTURAL synthetic dataset. The Structural uncertainty of the fault
and block displacement are considered
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Table 4.3: Table of parameters for STRUCTURAL dataset construction
Scenario Structural

Number of channels one
Width [300; 500]

Thickness [10; 20]
Wavelength [1000; 2000]
Amplitude [0; 300]
Orientation 90

Fault location 15 discrete positions
Block displacement [−12; 12]

The variability in the position of blocks relative to each other adds up to 24 meters in to-
tal, making blocks partly or entirely isolated. This provides a significant variation in the
dynamic response. The following figure 4.8 shows random realisations of the STRUC-
TURAL dataset. It can be observed that the fault location, blocks displacement relative to
each other and the position of the channel vary.
The statistical characteristics of porosity and permeability (figure 4.9), as well as their
interdependence (figure 4.10) with uncertainty taken into account, have been preserved,
just like in the FLUVIAL dataset. Figure 4.11 presents the petrophysical dependency of
some random examples from the STRUCTURAL dataset.
As in the previous case with the FLUVIAL dataset, the Petrel software workflow (𝑆𝐿𝐵𝑇𝑀 ),
based on the object modelling method, was used for data generation. However, to gener-
ate grids in *.GRDECL format with an undefined fault location and block displacement
relative to the faults, a set of fifteen workflows had to be created since this is the maxi-
mum number of positions along the x-axis that the fault can occupy. The dimension of
the x-axis is 16. Each workflow has a fixed fault position, while the block displacement
along the fault continuously varies. The results of workflows were exported as porosity
and permeability, and cells coordinate grids in *.GRDECL format. Ten thousand such
realisations were created, 665 for each scenario with fault location. The model dimension
is 𝑥 = 16, 𝑦 = 12, 𝑧 = 10, where 𝑑𝑥 = 𝑑𝑦 = 50𝑚 and 𝑑𝑧 = 1𝑚.
The flow calculations were performed using a model from the FLUVIAL dataset with a line
drive well placement scheme, and the calculations were conducted over 60 time intervals.
In summary, this subsection aims to create a dataset for training a generative network that
considers uncertainty in the spatial distribution of geological bodies, petrophysical depen-
dencies and structural uncertainty, such as fault location and vertical block displacement.
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Figure 4.8: Examples of STRUCTURAL synthetic dataset.
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Figure 4.9: Porosity and permeability distributions for the entire dataset. Right: porosity, left:
permeability.

Figure 4.10: Porosity/Permeability petrophysical relationship for the channel facie for the entire
dataset. Right: y-axis in millidarcy, left: the same relationship, but the y-axis in log(millidarcy).

Figure 4.11: Porosity/Permeability petrophysical relationship for the channel facie for some
random samples. Right: y-axis in millidarcy, left: the same relationship, but the y-axis in
log(millidarcy).
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4.3 Set up for Brugge field case study

4.3.1 Brugge benchmark

Figure 4.12: Structure of the
Brugge field. Each colour repre-
sents a zone with distinct geolog-
ical settings. Schelde , Maas ,
Waal , Schie

The Brugge field is a semi-synthetic oil reservoir model
used for benchmarking and research in reservoir engi-
neering and geoscience. The model is used to develop
and test optimisation and history matching methods for
oil reservoir management. It was chosen as the basis
for creating a training dataset for GWAE. The three-
dimensional model of the semi-synthetic field was pre-
sented as a set of 104 realisations (TNO) based on well-
log curves with fixed locations at the SPE-ATW work-
shop in Brugge by Peters et al. (2010). The field consists
of 30 vertical wells, with 20 functioning as producers and 10 as injectors. From a geolog-
ical perspective, the field is a half-dome structure elongated in a west-east direction. A
significant fault is observed in the northern part of the structure. The size of the field is
approximately 10 ⋅ 3 km, figure 4.12.
The Brugge benchmark is a platform for testing approaches to HM and development op-
timisation. One such example is the study by Y. Chen et al. (2010). The paper applies
ensemble-based closed-loop optimisation to the Brugge field to maximise the net present
value. In a later article Torrado et al. (2015) proposed a methodology which provides an
efficient and accurate means of ranking greenfield portfolios in the presence of geological
uncertainty. By characterising uncertainty in sedimentary variability and flow behaviour
through representative geological realisations, decision-makers can rapidly evaluate mul-
tiple field-development plans. Examples of using the Brugge benchmark for testing ap-
proaches of HM include various works, such as Chalub et al. (2023), Cruz et al. (2022),
Demyanov et al. (2015), and Mohamed et al. (2010), since the complexity of the field
opens up opportunities for various research and comparisons.
From a stratigraphic point of view, Brugge consists of four zones (Schelde, Maas, Waal,
Schie) similar to Brent-type North Sea deposits. However, it should be noted that the
stratigraphic sequence of zones was intentionally disrupted to increase the model’s com-
plexity. The conceptual model of the deposit is presented in figure 4.13. More detailed
characteristics of each zone are presented in the table 4.4
Based on the petrophysical properties of each zone, it can be concluded that a greater vol-
ume of production is expected from the Waal zone as it is the thickest layer with good flow
properties. The Schelde zone is less favourable for production than Waal, as it consists of
high-permeability channel bodies included in shale deposits with low permeability, mak-
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Figure 4.13: Conceptual stratigraphic representation of the Brugge field. Note that the true se-
quence of stratigraphic zones should be Fluvial (Schelde ), Upper shoreface (Waal ), Lower
shoreface (Maas ) and Sandy shelf (Schie ), but it was intentionally swapped to Fluvial (Schelde
), Lower shoreface (Maas ), Upper shoreface (Waal ) and Sandy shelf (Schie ).

Table 4.4: Main characteristics of each zone

Zone Average
thickness, m

Average
porosity, %

Average perme-
ability, mD

Depositional en-
vironment

Schelde 10 21 1100 Fluvial
Maas 20 19 90 Lower Shoreface
Waal 26 24 814 Upper Shoreface
Schie 5 19 36 Sandy Shelf

ing this zone more heterogeneous. Maas permeability is orders of magnitude lower than
Waal and contains carbonate concretions.

Figure 4.14: Relation of porosity
and permeability for each zone of
the field

The Schie zone is the least favourable for production
and is of little interest as it has a small thickness and
poor flow properties due to irregular carbonate patches.
Based on the preliminary flow calculations on the TNO
and BRUGGE datasets, the distribution of total fluid pro-
duction proportions is as follows: Schelde — 18%, Maas
— 6%, Waal — 78%, Schie — less than 1%.
When compiling the dataset of 104 realisations, the au-
thors (Peters et al., 2010) followed the following princi-
ples, which become a base for the algorithm of generat-
ing a dataset for training GWAE:
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• The facies distribution within each zone with cor-
responding porosity and permeability characteristics. It is worth noting that for the
Schelde zone, representing a fluvial environment, two geological modelling algo-
rithms were used: Object-based modelling and Sequential Indicator Simulation.
The other zones were modelled exclusively using the SIS method with different
settings.

• The porosity parameter was stochastically modelled using SGS for each zone.
• The permeability parameter was determined with different scenarios: determinis-

tically depending on the porosity (figure 4.14), deterministically for every facie or
stochastically with co-Kriging on porosity.

Overall, these principles were followed to ensure that each realisation in the dataset cap-
tures the spatial variability and heterogeneity of the Brugge deposit, allowing for a realistic
representation of the reservoir conditions.

4.3.2 BRUGGE dataset construction for GWAE

Training generative neural networks requires large datasets, so 104 implementations are
insufficient. Following the principles outlined in the previous subsection, a dataset of
10,000 realisations was created. Each of the four zones was modelled separately, taking
into account the inherent uncertainty of each zone’s parameters. The simulation model
was created in accordance with the parameters mentioned in the Peters et al. (2010) and
has not been modified.

Schelde

The Schelde Zone has a fluvial depositional environment characterised by channel facie
with favourable flow properties and shale impermeable facie. According to Peters et al.
(2010), Object Modelling and SIS algorithms of geological modelling were used to gen-
erate facies of training dataset and SGS for porosity-permeability. The input data for this
process were well data. Figure 4.15 shows histograms of porosity distributions for the
well data, TNO dataset, and GWAE training dataset. It can be observed that the statistical
distribution of porosity in the GWAE dataset is in good agreement with the well data. In
contrast, the TNO dataset has a narrower range of distribution. The right part of figure 4.15
compares porosity and permeability dependency. As can be seen, the dependency differs
slightly because the initial porosity distributions are different. However, the differences
are insignificant, so no major changes are expected in flow modelling.
The table 4.5 displays uncertainty parameters for the Schelde zone when using the Object
Modelling and SIS algorithms.
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Figure 4.15: Schelde zone. Left: comparison of porosity distributions for initial well data ,
TNO (104 realisations dataset) , and GWAE training dataset . Right: comparison of porosity-
permeability dependency of TNO dataset and GWAE training dataset.

Table 4.5: Ranges of uncertainty for Schelde
Modelling Approach Object Modelling

Channel Width [50; 550]
Channel Thickness [5; 20]

Orientation [200; 300]
Amplitude [200; 1600]
Wavelength [250; 2500]

Variogram Major for porosity [1200; 1700]
Variogram Minor for porosity [600; 1200]

Variogram Vertical for porosity [1; 5]
Modelling Approach SIS

Variogram Major for channel facie [350; 550]
Variogram Minor for channel facie [50; 250]

Variogram Vertical for channel facie [5; 20]
Variogram Major for porosity [1200; 1700]
Variogram Minor for porosity [600; 1200]

Variogram Vertical for porosity [1; 5]

The following figure 4.16 shows random realisations from the training dataset for GWAE
of the Schelde zone for the Object Modelling method (left) and SIS (right).

104



4.3. SET UP FOR BRUGGE FIELD CASE STUDY

Figure 4.16: Examples of Schelde zone realisations for training GWAE. Left: Object Modelling,
Right: SIS
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Maas

The next stratigraphic unit of the Brugge field is the Maas zone, which represents the
Lower Shoreface depositional setting. The zone consists of sandstone facies with good
reservoir properties and carbonate concretions. The most suitable algorithm for mod-
elling such a depositional environment is SIS using well data. The left side of figure 4.17
compares porosity distributions for well data, the TNO dataset, and the training dataset
for GWAE. Similar to the Schelde case, the range of porosity parameter for TNO is tighter
than that of well data. The right side indicates the dependency of porosity and perme-
ability for TNO and GWAE datasets, which are slightly different The table 4.6 displays

Figure 4.17: Maas zone. Left: comparison of porosity distributions for initial well data ,
TNO (104 realisations dataset), and GWAE training dataset . Right: comparison of porosity-
permeability dependency of TNO dataset and GWAE training dataset.

parameters of uncertainty for the Maas zone when using the SIS algorithms
Table 4.6: Ranges of uncertainty for Maas
Modelling Approach SIS

Variogram Major for sand facie [500; 1500]
Variogram Minor for sand facie [400; 1050]

Variogram Vertical for sand facie [1; 6]
Variogram Major for porosity [1500; 2600]
Variogram Minor for porosity [500; 2000]

Variogram Vertical for porosity [1; 4]

Next figure 4.18 shows random realisations from the training dataset for GWAE of the
Maas zone for the SIS method.

106



4.3. SET UP FOR BRUGGE FIELD CASE STUDY

Figure 4.18: Examples of Maas zone realisations for training GWAE.
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Waal

The third stratigraphic unit has an Upper Shoreface depositional environment. It is char-
acterised by good filtration and storage properties and is the best zone for development.
This reservoir has a high thickness with an NTG up to 97 per cent, and the average per-
meability is about 800mD. When modelling such a reservoir, the most suitable algorithm
is SIS. Figure 4.19 demonstrates the main petrophysical characteristics of the Waal zone.

Figure 4.19: Waal zone. Left: comparison of porosity distributions for initial well data , TNO (104
realisations dataset) , and GWAE training dataset . Right: comparison of porosity-permeability
dependency of TNO dataset and GWAE training dataset.

The next table 4.7 provides uncertainty, mostly for variograms of facies and petrophysics.
Figure 4.20 shows random realisations from the training dataset.

Table 4.7: Ranges of uncertainty for Waal
Modelling Approach SIS

Variogram Major for sand facie [1000; 1700]
Variogram Minor for sand facie [700; 900]

Variogram Vertical for sand facie [20; 45]
Variogram Major for porosity [1000; 3000]
Variogram Minor for porosity [500; 1500]

Variogram Vertical for porosity [1; 6]
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Figure 4.20: Examples of Waal zone realisations for training GWAE.
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Schie

The last lower zone of the Brugge field is composed of the Sandy Shelf sedimentary ac-
cumulation. This is a relatively thin layer with poor development parameters. The main
feature of this zone is the irregular carbonate patches. Figure 4.21 presents the primary
petrophysical characteristics. Table 4.8 lists the uncertainty parameters that were included
in the creation of the training dataset. Figure 4.21 represents random realisations of the
training dataset.

Figure 4.21: Schie zone. Left: comparison of porosity distributions for initial well data ,
TNO (104 realisations dataset) , and GWAE training dataset . Right: comparison of porosity-
permeability dependency of TNO dataset and GWAE training dataset.

Table 4.8: Ranges of uncertainty for Schie
Modelling Approach SIS

Variogram Major for sand facie [400; 1500]
Variogram Minor for sand facie [200; 800]

Variogram Vertical for sand facie [1; 6]
Variogram Major for porosity [600; 1400]
Variogram Minor for porosity [600; 1200]

Variogram Vertical for porosity [1; 6]
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Figure 4.22: Examples of Schie zone realisations for training GWAE.

Summarising this subsection, it’s worth noting that the prior dataset of 10,000 Brugge
field realisations was created to train a graph generator. Each zone within the field has
distinctive features, allowing the evaluation of the generator’s capabilities not only on
simple datasets like FLUVIAL and STRUCTURAL but also on a larger dataset with more
diverse geological characteristics. It’s important to mention that the Schelde zone was
modelled using two different algorithms (Object Modelling and SIS).
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4.3.3 The process of converting corner point grid into a graph repre-
sentation

All the datasets described above were created with a corner point (CP) grid representation.
Therefore, the geological realisations are initially presented in this format, which needs to
be converted into a graph data type for training a graph neural network. This task is not
trivial because, in addition to translating the properties of each grid cell into graph nodes, it
is necessary to preserve the structural information. This subsection presents the algorithm
of converting CP data type into a graph representation.
The algorithm ensures the conversion of the CP data format into a graph type while pre-
serving the structural information. It involves general steps:

• Reading the CP file. The algorithm starts by reading the CP file containing the
geological realisation data.

• Creating graph nodes. The algorithm creates a corresponding node in the graph
for each cell in the grid. The properties of each cell in the CP file are transferred
to the attributes of the graph node. If a cell has the property ACTNUM = 0, it
indicates that it is irrelevant to the model. In the context of converting data into
a graph representation, cells with this property are excluded or removed from the
graph, indicating that they are not considered in the conversion process.

• Defining graph edges. The algorithm establishes edges between the graph nodes
based on the connectivity of the cells in the grid. Thus, if a face of one cell is
adjacent to two or more faces of other cells, then a graph node will contain the cor-
responding number of edges. The structural information is preserved by connecting
neighbouring nodes according to the grid topology.

• Mapping property values: The algorithm maps the property values from the CP file
to the attributes of the graph nodes. This step ensures that the information from each
cell in the grid is properly transferred to the corresponding node in the graph.

By following these steps, the algorithm converts the CP data format into a graph repre-
sentation that can be used to train a graph neural network. The most complex and time-
consuming step in the transformation process is determining the edges of the graph based
on the adjacency of cells in the initial grid. This enables the utilisation of structural infor-
mation and cell properties for more accurate predictions and analysis.
Each cell is a hexagon (�) and has eight vertices, each characterised by three coordinates
(𝑥, 𝑦, 𝑧). The vertices’ coordinates are determined through the 𝑧 coordinate of the vertex
from the 𝑧𝑐𝑜𝑟𝑛 section of the CP file and guide pillars (/), passing through these vertices
defined by two points (𝑥0, 𝑦0, 𝑧0); (𝑥2, 𝑦2, 𝑧2) in the 𝑐𝑜𝑜𝑟𝑑 section (see figure 4.23). The
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formula for recalculating the 𝑥?1, 𝑦?1, 𝑧1 coordinates of vertices as follows:

𝑥?1 = 𝑥2 + (𝑥0 − 𝑥2) ⋅
𝑧1 − 𝑧2
𝑧0 − 𝑧2

(4.1)
𝑦?1 = 𝑦2 + (𝑦0 − 𝑦2) ⋅

𝑧1 − 𝑧2
𝑧0 − 𝑧2

(4.2)

Figure 4.23: CP format cell geometry notation,
where cell (�) is characterised by 𝑥, 𝑦, 𝑧 coordi-
nates. 𝑧 is usually set in the 𝑧𝑐𝑜𝑟𝑛 section and 𝑥, 𝑦
can be calculated from pillars (/) and 𝑧 coordinate
for every vertice.

We convert each active cell into a set of six
labelled faces (⊡). As a result, we obtain a
dictionary where the key is the sequential
index of the cell, and the values are a list of
faces.
After that, it is necessary to find cells
whose faces have a common intersection
area. For a target 𝑡 cell:

• 0 face of the 𝑡 cell is checked for
intersection with the 1 face of the
neighbours below. In this case, the
neighbours below are cells with a
𝑘 = 𝑘𝑖𝑛𝑖𝑡 − 1 coordinate;

• 1 face of the 𝑡 cell is checked for
intersection with the 0 face of the
neighbours above. In this case, the
neighbours above are cells with a
𝑘 = 𝑘𝑖𝑛𝑖𝑡 + 1 coordinate;

• 2 face of the 𝑡 cell is checked for intersection with the 3 face of the neighbours on the
left. In this case, the neighbours on the left are cells with a 𝑖 = 𝑖𝑖𝑛𝑖𝑡 − 1 coordinate;

• 3 face of the 𝑡 cell is checked for intersection with the 2 face of the neighbours on the
right. In this case, the neighbours on the right are cells with a 𝑖 = 𝑖𝑖𝑛𝑖𝑡+1 coordinate;

• 4 face of the 𝑡 cell is checked for intersection with the 5 face of the neighbours in
front. In this case, the neighbours in front are cells with a 𝑗 = 𝑗𝑖𝑛𝑖𝑡 − 1 coordinate;

• 5 face of the 𝑡 cell is checked for intersection with the 4 face of the neighbours
behind. In this case, the neighbours behind are cells with a 𝑗 = 𝑗𝑖𝑛𝑖𝑡 + 1 coordinate.

If the intersection is a plane, the cells are considered neighbours, and an edge appears
between the corresponding nodes in the graph. To speed up the calculation of the adja-
cency search algorithm, it is assumed that if the ratio of intersection areas of neighbouring
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cells is close to one, then for such cells, there cannot be other neighbours concerning the
considered faces. Thus, such faces are excluded from further search.
Thus, after traversing all active cells (ACTNUM = 1) of the grid, we obtain data in a graph
representation that contains information about the internal topology of the object and the
spatial distribution of reservoir properties, such as porosity and permeability, figure 4.24.
This is more suitable for geological modelling because it avoids non-necessary cells in
lattice and only needs to make a lattice of proper structure. Moreover, unstructured grids
are suitable for modelling under structural uncertainty. So, if the gridded geological model
had a high proportion of zero-valued cells, it would entail the neural network to train on
these cells, which is undesirable.

Figure 4.24: Visual representation of translating a grid model into a graph format. The properties
of porosity ( , ) and permeability ( , ) of each cell of the grid are translated into a property
vector that characterises each node of the graph ( , ). The presence of an edge between nodes of
the graph indicates the adjacency of cells in the grid. Inactive cells ( ) of the grid are excluded
from the set of nodes of the graph.

It should be noted that this subsection gives a scenario where the original geological rep-
resentation is implemented as a structured grid. However, there are more suitable repre-
sentations that avoid unnecessary conversion from grid to graph. One such representation
is the connection list (Khait et al., 2019). Connection list allows to discretise a space by
representing connectivity between control volumes for structured and unstructured repre-
sentations, only for active cells.

4.4 Conclusion

The process of geological modelling using generative neural networks begins with the cre-
ation of a prior ensemble of subsurface models for training based on existing information.
These models are the foundation for generating essential data and prediction variables
through various techniques.
This section describes the construction principles of three training prior datasets, which
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will facilitate the subsequent training of GWAE for geological modelling and testing the
previously discussed technologies. The three distinct training datasets were created for
this purposes:

i - contains three-dimensional models of synthetic porosity and permeability prop-
erty cubes of the fluvial geological environment (FLUVIAL), with the primary un-
certainty centred around channel locations and their parameters;

ii - focuses on structural uncertainty in reservoir setting, particularly the placement of
a fault and block displacements combined with model (i) setting (STRUCTURAL);

iii - encompasses multiple realisations of the synthetic full-field Brugge benchmark
reservoir, comprising four zones with different depositional conditions and the vari-
ation of geological parameters (BRUGGE)

These datasets will be crucial in advancing our understanding and application of generative
neural networks in geological modelling.
During further experiments involving training GWAE and testing the network’s generative
capabilities, we will refer to each of the provided datasets to test various hypotheses and
draw conclusions about the applicability of the technology described in the Chapter 3:
Methodology.
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Chapter 5

Graph Wasserstein Autoencoders and
channelized synthetic case

In this chapter, I will present an approach to generate reservoir models conditioned on
production data and provide uncertainty estimation using the Graph Wasserstein Vari-
ational Autoencoder. This approach implicitly parameterises geological representations
into a lower-dimensional latent space and allows for uncertainty quantification and pro-
duction profiling across multiple geological concepts. By applying this approach to the
synthetic FLUVIAL dataset, I will demonstrate that GWAE reliably reproduces a reservoir
by comparing the static and dynamic properties of the reference model with generated
representations. In addition, I will provide an in-depth analysis of the structure of the LS
of the generative model using tools such as PCA, t-SNE, and TDA. In the second part of
the chapter, I will compare the generative capabilities of VAEs, WAEs, and GWAEs. The
comparison highlights the limitations of CNN-based generative networks in dealing with
structural uncertainty and significant reservoir/non-reservoir imbalances. Graph-based
approaches, such as GWAEs, are better suited to adapt to structural uncertainty by remov-
ing unnecessary non-reservoir nodes and breaking the regularity of the original grid.
I will introduce the VAE-based workflow to map reservoir description into latent space
that depicts associated geological uncertainty. To solve the inverse problem, it is neces-
sary to merge measurements with existing knowledge of model parameters and physical
correlation patterns between the model and data. The process involves three significant
stages:
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Stage One: Parametrisation of the physical system by defining the minimum model
parameters under prior uncertainty

The first stage involves creating a prior training dataset that describes the entire space of
uncertainty as comprehensively as possible. We assume that the prior dataset is repre-
sented by the FLUVIAL. After that, the dataset is converted into a graph representation
and fed into GWAE’s training process, the working principle of which was described in
the Chapter 3: Methodology. The architecture of GWAE implies that the latent space,
located at the junction of the Encoder and Decoder, is the minimal set of model parameters
that can describe the object of interest, considering uncertainty and implicit dependencies
between parameters, such as petrophysical ones, figure 5.1.

Figure 5.1: The first step of inverse modelling is to parameterise prior dataset into the LS, which
are model parameters, by training GWAE.

Stage Two: Conducting forward modelling by unveiling physical laws that can help
forecast measurement outcomes

After the neural network is trained and capable of reproducing instances of the training
dataset and generating new instances reliably, we can exclude the Encoder from further
consideration. It should be noted that a new instance is considered reliable if it does not
contradict the geological concepts incorporated in the creation of the prior dataset, taking
into account uncertainty.
For further work, we need the LS, representing the parameter space characterising the
geological object under consideration. Parameter space is the compressed and abstract
representation of features or properties of geological formations or structures. The De-
coder essentially serves as a forward model, allowing us to translate the parameters into a
physical representation of the object — a geological model, figure 5.2.

Stage Three: Inverse modelling to deduce the true values of the model

The final step involves searching for the location in the latent space that matches the data
within the latent space. The provided decoded geological model should not contradict
the available information about the field. Thus, the third stage involves an optimisation
process aimed at minimising the OF error described in the Chapter 3: Methodology.
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Figure 5.2: The second step of inverse modelling is to provide forward modelling through the
LS and Encoder. Note that Encoder can generate samples from the initial prior dataset and new
reliable examples

To recap, the OF consists of three components: Static loss, Flow loss, and Realism loss
( Section 3.7: Objective function in HM process). In the case of minimising the Static
loss component, the optimisation process seeks a set of parameters within the LS where the
well log information of the generated reservoir closely matches the data from real well logs
for each well. The Flow loss accounts for the well’s dynamic response similarity to the real
measurements, meaning the well production indicators, after simulation modelling, should
closely match the actual measurements. The third component controls the optimisation
process by restricting the search space to dense regions within the LS, thereby enhancing
the geological reliability of the generated model, figure 5.3.

Figure 5.3: A latent vector is sampled from the LS, which is decoded to the geological represen-
tation. Three-component OF then calculated and provides information for the optimiser about the
next optimisation step in the LS

This approach of solving the inverse problem through a latent space provides the following
opportunities:

• Provide unique generic non-parametric description across multiple geological con-
cepts;

• Effective model update with the reduced dimensionality of the model description in
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5.1. GENERATIVE QUALITY OF GWAE WITH FLUVIAL DATASET

the LS;
• Implicit link between the model update and the flow response via the LS.

This provides an opportunity to obtain multiple models and quantify uncertainty in reser-
voir prediction with the HM ensemble. The approach addresses the issue that the high-
dimensional data originates from a lower-dimensional source that is not directly observ-
able. This means that each data point, or sample, can be considered an indirect mea-
surement of a lower-dimensional phenomenon responsible for the variability between the
samples. This phenomenon, described as a lower-dimensional manifold, represents a geo-
metric structure in a lower-dimensional space that generates high-dimensional data points
when mapped back to the original space. The aim of dimension reduction, therefore, is to
identify the key dimensions or degrees of freedom that capture the majority of the variance
in the data.

5.1 Generative quality of GWAE with FLUVIAL dataset

When solving the inverse problem under uncertainty of various geological scenarios, a
problem arises in that modelling such scenarios requires constructing a set of geologi-
cal models, each of which must be described by its unique set of parameters. This, in
turn, imposes constraints on the optimisation process, as it must navigate through condi-
tions where the parameter set for each geological scenario differs. Essentially, solving the
inverse problem boils down to a collection of processes, each corresponding to its own
scenario. Thus, the question arises: can we determine a universal set of parameters that
would allow us to consider different geological scenarios as a unified space in which we
can solve the inverse problem using optimisation algorithms?
Let’s consider the geological scenarios of the FLUVIAL dataset, which is conceptually
divided into a scenario with one river channel and a scenario with two channels, with some
variations in the shape (i.e. wavelength, amplitude, orientation). To conduct optimisation,
we need to somehow “jump” from one scenario to another. To solve such a task, both
scenarios must be translated into a single universal parametric space: the latent space of
the trained GWAE.
Thus, after training GWAE on the FLUVIAL dataset, I obtained a unified LS parameter
space that includes variants of both geological scenarios. Each sample of the training
dataset is a graph containing porosity and permeability properties; every graph has a 1919
number of nodes, so the initial dimensionality is 1919 ⋅2 = 3838. The Encoder of GWAE
decreased the initial dimensionality of 3838 to the dimensionality of a LS, which is 30.
It is worth noting that the dimensionality of the space was chosen empirically. Several
publications (B. Chen et al., 2022; Guss et al., 2018; Levina et al., 2004) provide a dimen-
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5.1. GENERATIVE QUALITY OF GWAE WITH FLUVIAL DATASET

sionality selection process, but this research went beyond the scope of the current work.
Increasing the dimensionality of the space did not improve the quality of the generated
geological realisations, which represented three-dimensional fields of porosity and perme-
ability properties. If the dimensionality of the space is reduced below 30, the performance
of the Encoder starts to deteriorate, indicating that the features become insufficiently in-
formative for the correct generation of properties.

Figure 5.4: Upper row: Examples of the initial porosity grid from the training dataset. Lower row:
GWAE reconstructed

Each node of the graph is characterised by porosity and permeability properties. The
following figure 5.4 shows random realisations from the training dataset (top row) and
those reconstructed using the GWAE Decoder (bottom row).
It can be concluded that the vectors of the latent space are informative enough to recon-
struct the spatial dependencies of property distribution accurately. It was mentioned ear-
lier that one of the drawbacks of generative models based on variational autoencoders
is the blurriness of generated objects, which is partially mitigated by incorporating the
Wasserstein metric into the loss function. This blurriness can also be observed in the re-
constructed geological representations. It is worth noting that three-dimensional VAEs
based on standard CNN perform worse in reconstructing property cubes, which will be
presented further.
The following hypothesis regarding the generative capabilities of GWAE was that petro-
physical parameter dependencies, such as porosity and permeability, could be implicitly
reconstructed. This is a significant departure from standard petrophysical modelling ap-
proaches, where porosity-permeability dependencies are determined deterministically. It
can be observed that the channel shapes and petrophysical properties are well preserved,
figure 5.5. However, it should be noted that the permeability ranges predicted by the
GWAE are more condensed compared to the true model permeability ranges concerning
porosity.
Therefore, the preliminary analysis confirms the generative capability of GWAE under
geological scenario uncertainty.
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5.1. GENERATIVE QUALITY OF GWAE WITH FLUVIAL DATASET

Figure 5.5: GWAE preserves petrophysical relations and spatial propagation of properties under
uncertainty of geological scenarios

5.1.1 Latent Space inner structure

The next stage in the exploration of the generative capabilities of GWAE is a more in-
depth analysis of the LS. Understanding its structure will help understand the technology’s
advantages and limitations. But first, we need to answer the initial question – is there any
internal structure in the LS? Is it organised randomly, and we cannot use it for a more
efficient search for geological realisations under given conditions?
To answer this questions, it is necessary to employ dimensionality reduction techniques.
Initially, the dimensionality of the latent space is set to 30, which makes the analysis quite
challenging. I attempted a pairwise exploration of each dimension to identify any in-
ternal structure visually, but it yielded no meaningful results. In the Section 3.8: Tools
for analysing multidimensional spaces, I described dimensionality reduction techniques,
based on which I developed a tool for processing and visualising the LS of GWAE. It is
worth noting that there are many more methods available, but for my work, I chose PCA,
t-SNE, and TDA.
The following figure 5.6 represents a visualisation of the 30-dimensional LS. Undoubtedly,
any dimensionality reduction tool loses some information, but even such visualisation al-
lows for certain conclusions. In case of FLUVIAL dataset the first three main components
of the PCA projection holds only 30 per cent of overall information. Let’s first examine
the global properties of the space under each tool and then move on to more local charac-
teristics.
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Figure 5.6: Visualisation of the 30-dimensional LS in the PCA, t-SNE, and TDA spaces. Each
point in the PCA and t-SNE space represents a 30-dimensional vector characterising a geological
realisation from the training dataset. depicts a geological scenario with one channel while
represents scenarios with two channels. In the TDA space, the appearance and disappearance of
connected components are displayed.

PCA and t-SNE

I intentionally merged the analysis of the LS visualisation in PCA and t-SNE, as es-
sentially, we see the same thing in both images. Globally, the space consists of a rela-
tively dense cloud of points comprising two large clusters. Each point represents a spe-
cific 30-dimensional coordinate of model location in the LS for each geological realisa-
tion from the training dataset, with the colour indicating it belongs to a particular sce-
nario. depicts a geological scenario with one channel while represents scenarios
with two channels. It is evident that scenarios are grouped but have areas of overlap.
From this, we can infer that if sampling is performed in a specific region of the latent
space, we can expect the generated geological realisations to belong to a certain scenario.

Figure 5.7: 3-d t-SNE visualisation of the 30-d
LS. Every point in this cloud is a sample from the
training dataset. left: the LS in the scenario di-
mension, where / represents a scenario with one
channel, and / represents two channels. On the
right: the same LS in the channel spatial arrange-
ment metric.

This could significantly improve sampling
efficiency in the LS. In the work of Céline
Scheidt (2018), this approach is referred to
as falsification, where the latent space is
considered as the entire prior space of pos-
sible geological scenarios. As additional
information becomes available, we can fal-
sify specific regions of this space and ex-
clude them from further consideration, re-
jecting models that do not match the data.
To understand the local structure of the la-
tent space, it is necessary to sample and
reconstruct geological realisations manu-
ally. Figure 5.7 shows geological realisa-
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tions corresponding to specific regions of
space. The latent space possesses an internal structure reflected in the spatial arrangement
of channels. If we consider the U-shaped cloud of points, it can be observed that the
channel “shifts” from the southeast to the northwest. cloud of points exhibits a similar
dependency. The northern part of the LS produces realisations where the channels are
spread across opposite sides. In contrast, the central part of the LS allows for reconstruc-
tions with channel placements closer to the central area of the grids. Also, the LS can be
represented in the channel arrangement metric. This time, the colour scale corresponds
not to geological scenarios but to the spatial placement of channels.
If we randomly select a model coordinate from the latent space and progressively add
Gaussian noise with a mean value of 0 and a variance ranging from 0 to 1, we obtain
the following figure 5.8. As the variance increases, the geological representation deviates
more from the original, but visually, geological realism is not critically lost.

Figure 5.8: Visualisation of the geological representation reconstructed by GWAE, adding Gaus-
sian noise to the original latent vector. Variance step from 0 (left) to 1 (right).

TDA

Figure 5.9: The LS in the context of TDA. de-
note points that are furthest from the rest on 𝐻0,
and most stable rings (𝐻1). However, it cannot
be concluded that these objects are global topo-
logical properties of the space.

Topology is the study of the shape of data.
Analysing the topology of an object in-
volves comprehending its geometry and
structure without necessarily reducing its
dimensionality. Topological Data Analysis
enables the examination of complex, mul-
tidimensional, noisy data and the extrac-
tion of essential characteristics that offer
insights into the object’s shape under con-
sideration. In our case, we will analyse the
entire LS as a single object. To do this, let’s
refer to figure 5.9. We can see that in space
𝐻0, the points are arranged along the ver-
tical axis, indicating that the hidden space
vectors are separated from each other by
different distances, with some distinct ob-
jects marked by .
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In 𝐻1, however, there are no pronounced
objects, as the points are stretched along the diagonal more or less equally. Minor outliers
are denoted by , suggesting that there may be several rings in this dimension that do not
represent global objects. In general, it can be concluded that the 30-dimensional latent
space lacks any distinct topological characteristics and is more akin to a simple cloud
of points. In the context of TDA, one cannot conclude that the geological scenarios are
somehow distinguishable. Instead, both scenarios appear to form a single cloud.

NOTE: It is worth noting that the remote objects marked with a red circle can be
either large clusters of points already merged into a massive body or individual
remote points. It is likely that in the 30-dimensional space, a situation similar to
figure 3.22 when we have two remote accumulations of geological concepts. We
will return to this hypothesis in later subsections of this chapter.

5.1.2 Variation of models along the shortest path trajectories in the
LS

In the previous sections of this chapter, we examined the generative ability of GWAE solely
in reconstructing instances from the training dataset. However, a question arises: what are
the generative capabilities – to reconstruct from the dataset or to generate something new?
Of course, it is more likely the latter. To definitively assess the generative capabilities
of the neural network, it is necessary to evaluate how well it can generate new objects
that are not present in the training dataset. This assessment will use a variation of models
along trajectories through the LS as an example. The idea is as follows: select two random
points/coordinates in the LS, construct the shortest path between them, and then choose
hidden model coordinates in the LS along this path at regular intervals. The GWAE will
be used to reconstruct the geological realisations from these hidden vectors. Ideally, we
should observe a smooth transition from the initial realisation to the final one.
It is important to note that in the Subsection 3.6: Inner Geometry of a Latent Space,
it was mentioned that the LS is not linear inside. Therefore, the shortest path will not be
defined by Euclidean distance but rather by Geodesic distance. One should not expect the
distance between ensemble members to be measured as Euclidean. This distance should
traverse areas of high density in the LS to allow the generator to produce high-quality
realisations. Realisations in less dense regions of the LS become less probable and may
eventually become highly improbable, indicating that they are geologically unrealistic.
I selected two random geological realisations for the experiment and identified their posi-
tions in the LS. Then, I calculated the shortest paths through the latent space using both Eu-
clidean and Geodesic metrics. Ten realisations were chosen along these paths and recon-
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structed back into geological representations using the Decoder. Figure 5.10 shows three
such experiments. It can be observed that Geodesic interpolation provides higher-quality
realisations, while Euclidean interpolation becomes less confident at intermediate steps.
This indicates that Euclidean interpolation passes through regions of the 30-dimensional
LS with lower density than Geodesic interpolation.

Figure 5.10: Variation of ensemble members along the shortest path trajectories in the LS. Left
side: starting and final points in the LS. Right side: Euclidean (E) and Geodesic (G) interpolation
options in 10 steps. It’s noticeable that Geodesic interpolation enables the reconstruction of higher-
quality geological realisations.

In the figure, special attention should be paid to the third case – the transition from one con-
cept to another. Here, it can be seen that Euclidean interpolation practically deviates into
unrealistic implementations from steps 4 to 8, while Geodesic interpolation only shows
non-quality implementations at steps 7 and 8. This behaviour can be explained as follows:
according to the TDA analysis, objects in the space are distant from each other in 𝐻0.
These objects can be geological scenarios. Therefore, when interpolating between scenar-
ios, we inevitably enter a low-density space, resulting in unrealistic geological variations.
However, the Geodesic metric attempts to “stay” in dense regions of the latent space for
as long as possible.
It should be emphasised that the intermediate realisations are not instances from the train-
ing dataset. This implies that the quality of the GWAE Decoder’s performance depends
on the quality of the training process and the hidden vector used for reconstruction. It
cannot be expected that a generated object will be of high quality if the latent position was
sampled from a region of the LS where no training examples are present. This conclusion
can be generalised to a fundamental ability of machine learning methods, which work well
as interpolators but not as extrapolators.
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5.2 Uncertainty of dynamic response and history match-
ing

Figure 5.11: Well place-
ment scheme

This section of the chapter will focus on studying the dynamic re-
sponse of geological realisations generated by GWAE. To achieve
this, I prepared a simulation model where GWAE-generated
porosity and permeability grids were automatically loaded. Pa-
rameters of the flow simulation models are presented in the ta-
ble 4.2 of the Chapter 4: Modelling uncertainty and datasets
construction process. I investigated how the dynamic response
varies across the latent space, especially for models that are close
concerning latent coordinates. The synthetic reservoir model was created using a line drive
scheme with one line of producers in the middle and two lines of injectors, figure 5.11.

5.2.1 Uncertainty of dynamic response

To assess the impact of changes in model location in the LS on the dynamic response, I
conducted the following experiment, figure 5.12. A reference realisation ( ) was selected
as a basis for further comparison. Similar to the previous subsection, Gaussian noise
with different variances was added to the latent vector of the reference realisation and
geological realisations ( ) were generated by the Decoder. Additionally, the three nearest
neighbours ( ) were chosen based on the LS vector and were also reconstructed. In the
next step, simulations were conducted. The only difference between them was the porosity
and permeability grids. For analysis, the producing well P2 and injecting well I2 were
selected, as these wells intersected the channel in all realisations and had the strongest
flow connection, exerting the greatest influence on each other.
Despite the geological similarity of realisations, some production profiles vary in a wide
range, which helps us to estimate production uncertainty. Local variations in property
distribution could explain the high variability of dynamic profiles. The channel shape is
similar across the models, but the flow dynamic is driven by connectivity that is affected by
local features. That is why this intensive dimensionality reduction from 30d to 3d leads to
global features reflection of the models and loss of local features information. Moreover,
the wide range of production comes from the absence of historical conditioning. In other
words, the production history is unknown to us, so we have a wide range of uncertainty in
dynamic response despite the high similarity of geological realisations.
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Figure 5.12: Visualisation of the uncertainty of the dynamic response of different geological re-
alisations. I selected a region in the LS ( ) where the realisation identified as the reference.
Different noise levels were added to the latent vector of the reference, and it was reconstructed by
the Decoder ( ). Additionally, three neighbours were selected in the latent space ( ). All these
realisations were simulated. The right part of the figure indicates the oil and water production rates
for well P2 and the water injection rate for well I2.
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5.2.2 History matching through the latent space

The optimisation experiment was conducted through the LS conditioned on “hard” static
and dynamic well data. The scheme of the experiment was presented in figure 5.3. I picked
a reference model which will be unknown to us except for petrophysical and production
well data. Then, we start an optimisation process by iteratively generating the population
of models and comparing it with the reference well data, consequently minimising a loss
function.
The loss function consists of three components: Flow loss, which is the MSE difference
in oil /water production and injection rates between the reference and generated models;
Static loss, which is the difference in static (petrophysical) properties in wells, i.e. poros-
ity/permeability values; Realism Loss is the third parameter that implicitly measures the
realism of every GWAE generated realisation.
The LS has various densities, so it is considered that the density reflects the probability of a
particular geological setting. I estimated the density of latent space in different regions by
the parameter metric 𝐙 (was introduced in the Section 3.6: Inner Geometry of a Latent
Space) that provides an estimate of the curvature of the LS and increases the uncertainty
estimate as we move away from dense regions of the LS covered by training data. If the
value of Realism loss is high, the optimisation algorithm sampled from the subspace is of
low density, i.e., highly unlikely realisation or geology of low reliability. Otherwise, the
sampling process is conducted in regions of high density, i.e., the realisation is likely.
The Covariance-Matrix Adaptation Evolution Strategy (CMA-ES) optimisation algorithm
(was introduced in the Section 3.4: Optimisation theory) was chosen to search the LS.
CMA-ES is an algorithm that can take the results of each generation and adaptively in-
crease or decrease the search space for the next generation. I launched four optimisation
processes, each composed of 100 iterations, with a population size of 51 samples. The op-
timisation process has found various realisations that all meet the following requirements:
similarity in static and dynamic wells data along with geological realism of every found
solution. Results of the optimisation process are presented in figure 5.13. Due to high un-
certainty in regions without well data, the geological realisations have not been completely
similar to our reference model, so the uncertainty of geology could be considered.
In figure 5.14, oil and water production profiles for well P2 and injection profiles for wells
I3 and I5 are presented. In grey lines there are dynamic responses of the initial population
of generated models, which shows great variability due to the randomness of the initial
population to spread across the latent space evenly. Final optimised realisations are shown
in solid black lines, in proximity to history data. Only three wells penetrated the channel,
so the rest were performed without production. Values of production comparing reference
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Figure 5.13: Visualisation of the reference porosity property ( ) and the cubes obtained through
the optimisation process ( ). Due to high uncertainty in regions without well data, the geological
realisations have not been completely similar to our reference model

and optimised models are quite close to each other, so the similarity in dynamic response
can be considered acceptable.

Figure 5.14: Production dynamics of injectors and producers for the initial model ensemble (top
row) in comparison to the final optimised ensemble (bottom row) vs the reference dynamic response

Earlier, I considered the static well properties known to us, so the optimisation process
should have found solutions similar to the reference model. GWAE along with the optimi-
sation process, managed to find models with appropriate static properties, figure 5.15. It
can be stated that the GWAE can be used to generate an ensemble of reliable realisations
conditioned to “hard” well data.

5.2.3 Objective Function efficiency study

To test the effectiveness of the OF as a tool for controlling realism of GWAE generated
realisations, the following experiment was conducted: the third component of the Objec-
tive Function (Realism Loss), which implicitly measures the realism of GWAE generated
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Figure 5.15: Static (porosity) property in wells P2, I2, I5: a. examples of initial (start) realisations,
b. reference (true) realisation, c. optimised (final) realisations

realisaition, was disabled. Then an optimisation process was run with the settings that
are described in the previous subsection. Thus, we simulate a HM process in which the
optimiser does not receive information about the spatial location of the geological repre-
sentations in the LS, and the direction of the optimisation with respect to the location in
the LS. As a result of HM, we expect the optimiser to find a geological representation that
provides similar static properties at well points as well as dynamic response. However, in
general, the geological realism of the model is not expected, as no information has been
obtained by the optimiser.
The following figures show the results of the experiment. Hereinafter in this subsuction,
the model obtained as a result of optimisation with a truncated Objective Function will
be called short_OF, and the models obtained using the full Objective Function - full_OF.
The left part of figure 5.16 shows the spatial location of the short_OF geological repre-
sentation in the PCA representation. It can be seen that the location of short_OF ( ) is
significantly distant from the main cluster of points. This suggests that the reconstructed
geological realisation will be significantly different from the prior set ( ), which is a vio-
lation of geological realism. The right part of the figure confirms this hypothesis, as the
reconstructed geological representation of short_OF ( ) differs from the reference model
( ) and the reconstructed realisations of full_OF ( ).
The following figures 5.17, 5.18 show that the optimisation process was able to find im-
plementations that provide reliable static and dynamic characteristics of the geological
realisation.
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Figure 5.16: Left: spatial location of the short_OF geological representation ( ) in the PCA rep-
resentation. Right: the reconstructed geological representation of short_OF ( ) differs from the
reference model ( ) and the reconstructed realisations of full_OF ( )

Figure 5.17: Static (porosity) property in wells P2, I2, I5. Reference model ( ), short_OF ( ) and
full_OF ( ). The overall similarity of well logs can be seen

Figure 5.18: Production dynamics of injectors (I2, I5) and producer (P2) for the reference,
short_OF and full_OF

131



5.3. VARIATIONAL AUTOENCODERS AND 3D RESERVOIR
REPRESENTATIONS

5.3 Variational Autoencoders and 3D reservoir represen-
tations

In Chapter 3: Methodology, a transition from standard Variational Autoencoder to Wasser-
stein Auto-Encoder was presented, followed by a shift from CNNs to graph convolutions.
In this section, I will provide a comparative analysis of the generative capabilities of vari-
ous modifications of the variational autoencoders and a comparison of computational costs
using the FLUVIAL dataset as an example.
Let’s start with a brief recap of VAE, WAE and GWAE. VAE is an unsupervised genera-
tive model comprising an encoder network, a decoder network, and a probabilistic latent
space. The encoder network takes in input data and maps it to a LS distribution. The
decoder network then reconstructs the input data from samples drawn from the LS dis-
tribution. VAEs aim to learn a low-dimensional latent space representation that captures
the underlying structure of the data and allows for generation of new samples from the
assumed distribution that constitutes the space of reservoir descriptions. The main draw-
back of VAE is the blurriness of generated objects, which can be addressed using the
Wasserstein distance.

Figure 5.19: Visualisation of an exam-
ple where a three-dimensional convolu-
tional kernel cannot process a grid with
an irregular structure when one of its
cells is missing.

WAE is another unsupervised generative model that
aims to learn a latent space representation of reser-
voir descriptions. WAEs use the Wasserstein dis-
tance, or Earth Mover’s distance, to measure the
discrepancy between the LS distribution and a prior
distribution. This encourages the LS to be close to a
prior distribution, which can improve the generation
quality and robustness of the model.
GWAE is an extension of WAE specifically de-
signed for graph-structured data. It leverages graph
neural networks to encode and decode graph repre-
sentations. GWAEs consider the graph’s structural
information when learning the latent space repre-
sentation. This makes them suitable for tasks such
as graph generation, graph classification, and graph
embedding.
VAEs, WAEs, and GWAEs are all unsupervised
generative models that learn LS representations of data. VAEs use the probabilistic ap-
proach, WAEs optimise the Wasserstein distance, and GWAEs are tailored for graph-
structured data.
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It was noted that to disrupt the regularity of the original grid, the first cell was “removed”
from each instance of the training dataset. As a result, the size of the original grid was
𝑥 ⋅ 𝑦 ⋅ 𝑧 ⋅ 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑃 𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 = 3840, while the graph used for training was 3838.
This small but significant difference means that CNN-based generative networks cannot
learn from data with such a structure, figure 5.19. This small change in data structure is
purely technical, aiming to demonstrate that even such simple cases unrelated to geological
modelling, could be a limiting factor.

5.4 Architecture of Generative Models

A pre-built solution described in the paper by Tolstikhin et al. (2017) was used for the
implementation of CNN-based VAE and WAE. The dimensionality of the latent space for
each network was set to be the same for all networks – 30.
I use batches of size 100 with the number of epochs to train 10,000 for VAE and WAE.
3DConv is 3D convolution, which is a type of convolutional operation applied to three-
dimensional data. Batch Normalisation (BN) is a technique to normalise the mean and
variance of the inputs within a batch of training examples. Rectified Linear Unit (ReLU)
is a non-linear activation function which is defined as 𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥), which was first
mentioned by Fukushima (1975). ConvTranspose3D is the inverse operation of 3D con-
volution.

Table 5.1: Architecture of VAE
VAE Encoder VAE Decoder
𝑥 ∈ 𝐑16⋅12⋅10

→ 3𝐷𝐶𝑜𝑛𝑣(2; 16) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 3𝐷𝐶𝑜𝑛𝑣(16; 32) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 3𝐷𝐶𝑜𝑛𝑣(32; 64) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 3𝐷𝐶𝑜𝑛𝑣(64; 128) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 𝐿𝑖𝑛𝑒𝑎𝑟(128; 128; 𝑏𝑖𝑎𝑠 = 𝑇 𝑟𝑢𝑒)
→ 𝐿𝑖𝑛𝑒𝑎𝑟(128; 30; 𝑏𝑖𝑎𝑠 = 𝑇 𝑟𝑢𝑒)

𝑧 ∈ 𝐙30

→ 𝐿𝑖𝑛𝑒𝑎𝑟(30; 1024; 𝑏𝑖𝑎𝑠 = 𝑇 𝑟𝑢𝑒) → 𝑅𝑒𝐿𝑈
→ 𝐶𝑜𝑛𝑣𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒3𝐷(16; 10) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 𝐶𝑜𝑛𝑣𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒3𝐷(10; 8) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 𝐶𝑜𝑛𝑣𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒3𝐷(8; 4) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 𝐶𝑜𝑛𝑣𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒3𝐷(4; 2) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑()

For the GWAE, the batch size was set to 10 and the number of epochs 1000 because the
training process is much slower due to graph convolutions. GraphConv is a type of neural
network designed to operate on graph-structured data. ELU stands for Exponential Linear
Unit (Clevert et al., 2016), which is an improvement over other activation functions like
ReLU. For 𝑥 >= 0, 𝐸𝐿𝑈 (𝑥) = 𝑥 (same as ReLU). For 𝑥 < 0, 𝐸𝐿𝑈 (𝑥) = 𝛼 ⋅ (𝑒𝑥𝑝(𝑥)−1),
where 𝛼 is a hyperparameter that controls the output for negative values. It has a smoother
gradient than ReLU, which can help improve the convergence of the optimisation process
during training. It does not suffer from the “dying ReLU” problem, where neurons can
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Table 5.2: Architecture of WAE
WAE Encoder WAE Decoder
𝑥 ∈ 𝐑16⋅12⋅10

→ 3𝐷𝐶𝑜𝑛𝑣(2; 16) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 3𝐷𝐶𝑜𝑛𝑣(16; 32) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 3𝐷𝐶𝑜𝑛𝑣(32; 64) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 3𝐷𝐶𝑜𝑛𝑣(64; 128) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 𝐿𝑖𝑛𝑒𝑎𝑟(128; 30; 𝑏𝑖𝑎𝑠 = 𝑇 𝑟𝑢𝑒)

𝑧 ∈ 𝐙30

→ 𝐿𝑖𝑛𝑒𝑎𝑟(30; 1024; 𝑏𝑖𝑎𝑠 = 𝑇 𝑟𝑢𝑒) → 𝑅𝑒𝐿𝑈
→ 𝐶𝑜𝑛𝑣𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒3𝐷(16; 10) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 𝐶𝑜𝑛𝑣𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒3𝐷(10; 8) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 𝐶𝑜𝑛𝑣𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒3𝐷(8; 4) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 𝐶𝑜𝑛𝑣𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒3𝐷(4; 2) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈
→ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑()

become permanently inactive, leading to dead pathways in the network.
Table 5.3: Architecture of GWAE

GWAE Encoder GWAE Decoder
𝑥 ∈ 𝐆1919

→ 𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑛𝑣(2; 2) → 𝐸𝐿𝑈
→ 𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑛𝑣(2; 1) → 𝐸𝐿𝑈
→ 𝐿𝑖𝑛𝑒𝑎𝑟(1919; 30; 𝑏𝑖𝑎𝑠 = 𝑇 𝑟𝑢𝑒)

𝑧 ∈ 𝐙30

→ 𝐿𝑖𝑛𝑒𝑎𝑟(30; 500; 𝑏𝑖𝑎𝑠 = 𝑇 𝑟𝑢𝑒) → 𝐸𝐿𝑈
→ 𝐿𝑖𝑛𝑒𝑎𝑟(500; 1919; 𝑏𝑖𝑎𝑠 = 𝑇 𝑟𝑢𝑒) → 𝐸𝐿𝑈
→ 𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑛𝑣(1; 8) → 𝐸𝐿𝑈
→ 𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑛𝑣(8; 2) → 𝐸𝐿𝑈

The models were trained using a 12th Gen Intel(R) Core(TM) i7-12700 2.10 GHz proces-
sor and an NVIDIA GeForce RTX 3070 graphics card. The training times of epochs per
second and total training in minutes are presented in the table 5.4.

Table 5.4: Time for training each model
Model ep./sec. Total (min.)
VAE 4.3 37
WAE 2.6 62

GWAE 0.4 40

5.5 Results of training Generative Models

In this section, the results of training the three variants of generative models will be pre-
sented. As mentioned, the training was conducted based on the FLUVIAL training dataset.
This choice was made because it is the simplest dataset among the three datasets described
in Chapter 4: Modelling uncertainty and datasets construction process. Additionally,
FLUVIAL has a fixed structure, which allows for training CNN-based neural networks.
Before analysing the quality of the generative models, let’s compare the internal struc-
ture of the latent space for the three generative models: VAE, WAE and GWAE. The
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FLUVIAL dataset consists of two main geological scenarios (one/two channels). In figure
5.20, a three-dimensional t-SNE projection of the 30-dimensional hidden spaces for VAE,
WAE, GWAE are shown respectively. The colouring shows the affiliation of the model
representation in the LS to one of the two geological scenarios ( - single channel; - two
channel).

Figure 5.20: Visualisation of the 30-dimensional LS in the t-SNE projection for VAE, WAE,
GWAE. Each point represents a 30-dimensional vector characterising a geological realisation from
the training dataset. depicts a geological scenario with one channel, while represents scenarios
with two channels

Noticeably, point cloud distribution trends are similar between the three generative models.
Still, the LS of VAE is significantly more scattered compared to WAE and GWAE, which
can lead to difficulties when navigating in latent space. This can be explained by the
replacement of the KL divergence metric with the Wasserstein metric in the architecture
of the generative networks (Subsection 3.2.2: From VAE to WAE).
To assess the quality of the Decoder, each generative network selected and reconstructed a
random realisation. In figure 5.21 (top), the original/reference porosity cube is displayed,
as well as the reconstructed outputs by the VAE, WAE, and GWAE Decoders. The middle
row compares histograms generated for porosity property relative to the reference distri-
bution. It should be noted that, for visualisation, histograms do not display porosity values
equal to zero, as their quantity is very large. A cut-off at porosity= 10% is adopted, so any-
thing below this threshold is considered non-reservoir. The percentage of non-reservoir
in all presented grids is 85%. The reservoir distribution (porosity > 10%) generated by
GWAE is the most concurrent with the reference. It can be concluded that VAE and WAE
do not reproduce the reference histogram and are skewed towards non-reservoir, as this is
the predominant property. Also, it should be noted that the right part of the histograms
for VAE and WAE has inflated values compared to the reference, which is reflected in
volumes. The lower part of figure shows the reconstructed porosity-permeability relation-
ships respectively. The VAE has the lowest generation quality, as the Decoder failed to
reproduce the spatial connectivity of the channel and only partially captured the petro-
physical dependencies. This indicates that replacing the KL with the Wasserstein metric
has worked correctly.
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Figure 5.21: Top row: Visualisation of the reference porosity grid and decoded by VAE, WAE
and GWAE respectively. Middle row: Histograms of porosity distribution of generative models
concerning reference. For visualisation purposes, porosity is presented within the (0; 0.5] range.
85% corresponds to porosity parameter values< 10%, considered as non-reservoir. The percentage
of non-reservoir cells amounts to 85% for all presented property cubes. Bottom row: Porosity-
permeability dependency of generative models concerning reference.
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WAE provides a good qualitative spatial reproduction of the channel position. However,
the propagation of the porosity property was not accurately reproduced. A significant in-
crease in porosity is observed at the southern end of the channel compared to the reference
model. Like the VAE case, the petrophysical dependency was not reproduced accurately.
Figure 5.22 shows a cross-section of the porosity grids for a reference model and recon-
structed by VAE, WAE and GWAE. VAE failed to recover the property in the central part
of the model (/) because the values inherent to the channel facies are completely absent.
WAE shows inflated values in the southern and northern parts of the model (/,/). As for
GWAE, the cross-section shows a high degree of similarity to the reference model in space
and absolute values of porosity property.

Figure 5.22: Cross-section of the porosity grids
for a reference model and reconstructed by VAE,
WAE and GWAE

The quality of reconstruction by the
GWAE Decoder was thoroughly examined
in the previous chapter and significantly
outperformed the previous models. How-
ever, it should be noted that the VAE and
WAE were taken as it was introduced by
Tolstikhin et al. (2017), without additional
tuning. In the case of VAE, the gener-
ative ability is significantly inferior due
to its internal architecture, while WAE
can improve with additional tuning. It
is worth mentioning that the graph-based
variant will significantly outperform WAE
the graph-based variant in the following
cases:

• Presence of structural unconformity: If the geological object is characterised by
structural uncertainty, CNN-based generative networks are inherently unable to ac-
count for them. The structural unconformity case will be presented in the following
chapter.

• Significant reservoir/non-reservoir imbalance. If there is a large imbalance towards
the non-collector in the property cube, the CNN during training will be biassed
towards the dominant properties. Therefore, additional engineering tricks will be
required to mitigate the data imbalance. As for the graph-based approach, we can
“win” against data imbalance simply by removing unnecessary non-reservoir nodes,
thereby breaking the regularity of the original grid

The next question to consider is how the quality of the generated geological objects can
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impact the corresponding dynamic responses. To conduct such an analysis, flow simula-
tions were performed for the reference porosity and permeability grids, as well as for the
grids generated by the VAE, WAE, and GWAE Decoders. The following figure 5.23 (top)
displays the average pressure maps at the final simulation step, as well as the rates of oil
production, water production, and injection for the entire reservoir (bottom).

Figure 5.23: Top row: Average pressure maps at the final step for reference model, VAE, WAE
and GWAE. Bottom row: Field oil, water and injection rates

It is noticeable that the dynamic response of the VAE significantly differs from the refer-
ence model. Due to the incorrect spatial reconstruction of the channel, the pressure map
displays significant pressure changes in regions that should not be involved in reservoir
development. Due to the channel’s fragmentation, the production and injection rates are
lower than the reference. Despite the correct spatial positioning of the channel facies, the
WAE realisation also shows significant deviations from the reference model. Two reasons
can explain this. Firstly, there is an overestimation of the porosity distribution, which re-
sults in an overestimation of permeability and, therefore, filtration properties of the rock.
Secondly, the inherent predisposition of variational generative models to generate blurry
representations leads to an increased drainage volume from the wells. The GWAE imple-
mentation shows the closest approximation in reproducing the dynamic response. This is
primarily due to the accurate spatial reconstruction of the channel and correct filtration
properties. However, the inherent blurriness in the reproduction also slightly increases
the filtration volume from the wells, resulting in higher production rates compared to the
reference case.
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5.6 Conclusion

In this chapter, I have presented an approach to generating reservoir models conditioned
on production data and estimating uncertainty with GWAE. This approach can implicitly
parameterise geological representations into a latent space of reduced dimensionality and
provides ways to uncertainty quantification and production profiling across multiple ge-
ological concepts. GWAE links the static model and its dynamic response via the LS, a
reduced-order representation of geological model complexity. On the synthetic FLUVIAL
dataset, I showed that GWAE reliably reproduces geology by comparing the reference
model’s static and dynamic properties with generated representations. GWAE utilises the
notion of a LS, depicting the variation of geological concepts and other geological prop-
erties. Navigation and optimisation through the latent space provide a model update and
an ensemble of history-matched models.
The comparison of VAE, WAE, and GWAE models for generating geological objects and
simulating dynamic responses reveals several key findings.
Firstly, VAEs suffer from blurriness in the generated objects (i.e. channel location is
blurred) and cannot accurately reproduce the spatial positioning of channels and petro-
physical dependencies. This is due to the limitations of their internal architecture.
WAEs show improvements over VAEs, with better reproduction of spatial positioning of
the channel. However, they still struggle to reproduce the propagation of porosity proper-
ties accurately, resulting in discrepancies compared to the reference model.
GWAEs, specifically designed for graph-structured data, demonstrate the highest quality
in reproducing dynamic responses. The accurate spatial reconstruction of channels and
correct filtration properties contribute to their superior performance.
The comparison also highlights the limitations of CNN-based generative networks when
dealing with structural uncertainty and significant reservoir/non-reservoir imbalances. CNNs
are inherently unable to account for structural unconformities (Chapter 6: Graph Wasser-
stein Autoencoders and fault synthetic case), and data imbalances require additional
engineering tricks to mitigate biases. On the other hand, graph-based approaches, such as
GWAEs, can easily adapt to structural uncertainty by removing unnecessary non-reservoir
nodes and breaking the regularity of the original grid.
Overall, the results suggest that GWAEs outperform VAEs and WAEs in terms of generat-
ing geological objects and simulating dynamic responses. However, further research and
tuning are needed to fully optimise the performance of all three models and address their
limitations.

139



Chapter 6

Graph Wasserstein Autoencoders and
fault synthetic case

6.1 Structural Uncertainty

This chapter will describe an approach of structural uncertainty parametrisation along with
uncertainty of reservoir properties, utilising a latent feature space. I will present an ap-
proach to solve an inverse problem through the LS, allowing for the generation of new
realisations in the joint uncertainty space of both types. To achieve this, two distinct gen-
erative networks were trained independently: one focused on the reservoir’s structural
characteristics, and the other filled the generated model with properties. The presented
experiments will reveal the importance of the prior and limitations associated with the
internal structure of the hidden space of the generative model, which could potentially
negatively impact the optimisation process.
Faults, horizons, and other structural elements have a critical impact on the dynamic re-
sponse of reservoirs, making the consideration of structural uncertainty a crucial factor
in modelling. This can also impact the effectiveness of reservoir management and devel-
opment (Bardy et al., 2019; Lescoffit et al., 2005; Manzocchi et al., 2008). The primary
cause of structural uncertainty is the low quality of seismic data utilised to create reser-
voir models. This results in imprecise fault/horizon positions due to the low resolution
of seismic images. Moreover, the interpretation of the structural data depends on the per-
sonal judgment of an expert. In such cases, conventional HM methods that rely on a single
interpretation of reservoir geometry may not match past production.
The difficulties of modelling under structural uncertainty lie in defining and parameteris-
ing the process of constructing structural surfaces. In the work of Suzuki et al. (2008a),
the uncertainty in structural interpretation, including fault identification and fault throw, is
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addressed by creating multiple structural models based on expert knowledge. To account
for fault positioning uncertainty, horizons and faults are stochastically perturbed from the
initial interpretation. Jackson et al. (2013) proposed that surfaces can be utilised to repre-
sent facies boundaries along with structural features, even in cases where they cannot be
correlated or identified in seismic data. Traditionally, these boundaries are modelled us-
ing grid-based stochastic algorithms, but the author suggests using surfaces instead. This
approach allows for the integrated modelling of structural, stratigraphic, and sedimen-
tological heterogeneities by creating a hierarchy of surfaces to represent the boundaries
between facies types rather than relying on geostatistics algorithms on a predefined grid.
He suggests several ways to generate these surfaces, such as deterministic or stochastic
interpolation between well data points, purely stochastic, or processed based with geome-
chanics. Sabatino et al. (2014) performed a HM process with structural uncertainty by
elastic gridding, which saves reservoir model topology.
The solution to the inverse problem should consider both structural uncertainty and un-
certainty in property distribution. IC fault model is a classical case where even a very
basic, easily parameterised structure significantly impacts flow and remains a stiff inverse
problem to infer (Demyanov et al., 2010). Another example is presented in the work of
Suzuki et al. (2008b), where an ensemble of realisations was generated as the prior set of
models to capture the full-field uncertainty. During the solution of the inverse problem,
the search is conducted within this pre-existing ensemble.
To automate the process of structural uncertainty quantification for AHM or UQ, there
must be some tools for controlling the physicality of the modelled structure, particularly
in the case of multi-variant modelling. There are several methods for constructing and
verifying the realism of structural models, such as manual inspection, developable meshes
(Thibert et al., 2005), elastic gridding (Sabatino et al., 2014) or mode advanced topology
(Schaaf et al., 2021) and graph (Hillier et al., 2021a) based structural modelling.

6.2 Generative quality of GWAE with STRUCTURAL dataset

I decided to train two generative models to examine the generative capabilities of GWAE
in the presence of both structural uncertainty and uncertainty in property distribution. The
first generative model will be responsible for generating a graph-type structural carcass,
where the output of the Decoder will be a graph that incorporates the fault location and
block displacement, figure 6.1 (left). The second GWAE fills the generated graph with
porosity and permeability properties, ensuring that there are no geological inconsisten-
cies, figure 6.1 (right). For example, a channel should be present on both sides of the
fault, accounting for block throw relative to each other. This two-decoder architecture is
justified because structural parameters (i.e. fault, block displacement) of geological ob-
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jects typically do not depend on parameters related to sediment accumulation settings (i.e.
porosity, permeability). Therefore, such an architecture does not contradict the physics
of the natural system; the structural changes of a geological object occur after sediment
accumulation, but not at the same time. A set of geological models called STRUCTURAL
is used as the training dataset for conducting further experiments. The main features are
the presence of uncertainty in the fault position (discrete parameter) and the displacement
of blocks along the fault (continuous parameter). The properties distribution is performed
by only one river channel variant, where the position and properties of the channel serve as
a source of uncertainty (Chapter 4: Modelling uncertainty and datasets construction
process).

Figure 6.1: The combination of Structural and
Property Decoders allows for the generation of a
graph-type structural carcass ( ), which is then
filled with petrophysical properties ( , ). This
combination enables the generation and filling of
the structural graph so that the distribution of
petrophysical properties does not contradict de-
positional processes.

During training, the GWAE responsible
for the generation of the structural car-
cass is isolated from depositional proper-
ties, thereby “cleaning out” the genera-
tive model from uninformative parameters
(porosity, permeability). The two-decoder
approach allows for a more detailed analy-
sis of the quality of each neural network,
explicitly separating the latent space into
two sets of parameters, facilitating better
orientation in the LS. However, it is worth
noting that the combined LS, i.e. combina-
tion of LS of structural GWAE and LS of
depositional GWAE, can be considered as
a unified parameter field that describes the
uncertainty of the geological object.
Figure 6.2 depicts an example of a random sample from the training dataset STRUCTURAL
and its reconstructed analogue by the Decoder. On the left, the propagation of porosity
properties and the presence of a block structure are shown in the familiar format of grids.
The middle figure shows a graph representation, where each graph node corresponds to a
grid’s cell, and the presence of an edge represents adjacency. This graph representation
allows for preserving the topological features of a geological object since the nodes of
the graph, which model the properties of the rock, have a common edge only if they are
physically adjacent. On the right, a map is presented in graph format. It is worth noting that
the LS is informative enough to allow the Decoder to reconstruct both structural features
and geological aspects correctly.
While solving the problem of edges prediction or generation of graphs, many literature
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Figure 6.2: Upper row: Examples of the initial porosity grid from the training dataset. Lower row:
GWAE reconstructed. The left column displays porosity grids and the arrangement of blocks along
the fault in the form of a grid of properties. The central column shows the same properties in the
form of a graph, where nodes correspond to grid cells and graph edges represent cell adjacency.
The right column depicts a porosity map in the form of a graph.
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sources point out a problem concerning incorrect recovery of edges connecting nodes
(Agrawal et al., 2019; Pandey et al., 2019; Rahmati, 2023). The experiments conducted in
this work were not an exception, and despite the overall high quality of the graph gener-
ation, sometimes inaccurate edge recovery was observed. Figure 6.3 illustrates one such
example. The grid-like geological representation is shown on the left. The indicates grid
cells that are on different sides of the fault, but are in contact with each other and therefore
connected. The centre shows a similar geological representation, but only in the form of a
graph. It can be seen that the graph nodes ( ) have three edges. Such edges fully reproduce
the neighbourhood of cells of the original representation. However, when reconstructing
the geological representation using GWAE, the neighbourhood of nodes ( ) was broken,
instead of the expected three edges two were generated. This means that the connectivity
of neighbouring nodes will be reproduced with an error. It is worth noting that the overall
quality of edge reproduction during training was of the order of 99 percent, so there was
no need to invent any tools for automatic quality control of edge recovery other than the
latent space density metric.

Figure 6.3: Left: Grid-like representation with nodes indicated as neighbours ( ). Centre: the
same geological realisation in the graph representation. Connected nodes represented by . Note
three edges connecting highlighted nodes. Right: GWAE reconstructed geological representation
with broken node ( ) connections. Only two edges were reconstructed.

6.2.1 Latent Space inner structure with structural uncertainty

Since the generative model consists of two GWAEs, the first responsible for generating the
structure and the second for propagating properties, we can divide the hidden space into
two parts. The first part parametrises structural uncertainty, and the second parametrises
petrophysical properties distribution uncertainty. The dimensionality of the hidden space
was empirically chosen to 48, while the dimensionality of the hidden space for the network
responsible for properties remained unchanged at 30. So the entire dimensionality of the
LS is 78. It’s important to note that in the case of training a single universal GWAE, such
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analysis (without the use of special techniques, (Higgins et al., 2017)) would be impossible.

PCA and t-SNE

Figure 6.4 provides 3d visualisation of model grids in 30-dimensional LS for property dis-
tribution (top), described by graph nodes with attached property values, and 48-dimensional
LS for structural features (bottom), described as a connected graph. Each point presented
in the 3D projection of the hidden space represents an instance of the training dataset (i.e. a
model grid), with its structural and depositional characteristics encoded as 48-dimensional
and 30-dimensional model representations, respectively. The first three principal compo-
nents of PCA for depositional and structural LSs describe 24 and 46 per cent of the total
variation respectively.

Figure 6.4: Upper row: visualisation depositional LS in PCA, t-SNE projection in channel position
settings. Lower row: the same for structural LS in fault position settings

Let’s visually analyse both LSs representation in PCA and t-SNE projections. The hidden
space responsible for properties (i.e. porosity, permeability) distribution in the reservoir,
figure 6.4 (top), has a well-separated structure similar to the FLUVIAL dataset. In the
case of a FLUVIAL dataset, the central part of the hidden space was filled with model
grids corresponding to the scenario of two channels. Such a scenario is absent in the
STRUCTURAL dataset. The colour scale corresponds to the spatial position of the channel,
indicating a distinct internal structure of the LS. If we traverse from the region to the

region, the channel will smoothly transition from one part of the property cube to the
opposite. It’s worth noting that t-SNE projection tends to make the representation denser,
thereby limiting the understanding of the actual space structure. PCA suggests that the
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central part of the space may have low density, thereby constraining the search space for
a potential optimisation process during AHM.
The structural hidden space, figure 6.4 (bottom), is displayed in a discrete colour scale
representing the fault’s position towards the boundary of the reservoir block. PCA visual-
isation of the space indicates significant sparsity, which largely depends on the fault’s posi-
tion in the cube. It is possible to trace certain patches of points with similar colour, which
means that the spatial arrangement of faults affects the mutual positioning of compressed
representations of geological models in latent space. However, it is quite challenging to
make a definitive conclusion about any internal structure; besides the spatial arrangement
of the fault, there is another type of uncertainty in the form of the mutual arrangement of
the blocks of the reservoir model that the fault separates. The combination of structural
uncertainty makes the compressed representation of the structural carcass of the reservoir
model challenging to interpret. As for the t-SNE projection, like in the previous case, it
tightens the point cloud, making it random and leaving no clear understanding of the actual
density in the hidden space. In the following section, I will expand on the interpolation
capability in the LS.

TDA

Figure 6.5: TDA projection of depositional (left) and structural (right) LS. Special attention should
be paid to the point highlighted by in𝐻1 dimension of property TDA projection. Multiple hollow
spaces (⌶) are observed in 𝐻0 dimension of the structural TDA

Moving on to the analysis in the TDA projection for the depositional LS, figure 6.5, at-
tention should be paid to the point highlighted by in 𝐻1 dimension. As a reminder,
according to the theory of persistent diagrams, objects located far from the diagonal are
the most stable (they live the longest) and can characterise the parameter space from a
geometric point of view. Here, we see one standout point that may indicate that points in
the original 30-dimensional space form a ring, which is somewhat confirmed by the PCA
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visualisation. This is an important indicator because, in further interpolation or solving
the inverse problem, one should “avoid” the ring’s central region.
Considering the persistent diagram for the structural LS, the internal structure’s primary
indicator is the𝐻0 dimension. In this dimension, we observe multiple hollow spaces (⌶),
indicating substantial heterogeneity in the point cloud in the 48-dimensional space. This
fact suggests that it will likely be quite challenging to “navigate” through such a discrete
space during interpolation or solve the inverse problem without a significant loss in the
quality of structural constructions.

6.2.2 Interpolation in the LS

To test the hypothesis of the sparsity of the hidden space and the robustness of the re-
construction to the different noise levels, I selected a random instance from the training
dataset and sequentially add Gaussian noise with a mean of 0 and variance of 0.2, 0.4, 0.6,
0.8, and 1 to the LS coordinate, figure 6.6.

Figure 6.6: Geological realisation reconstructed using the Decoder (first instance) with the sequen-
tial addition of Gaussian noise to the latent code. The fault location is depicted with ⇨. Note the
migration of the fault as the noise increases

It is evident that as the noise increases, the quality of spatial property reconstruction begins
to degrade. Meanwhile, the presence of structural features appears to be more random, as
the positions of faults and block displacements occur chaotic. From this, we can conclude
that the hidden space’s internal structure is a complex object with regions of varying den-
sity. This undoubtedly will affect sampling quality during the optimisation process, as
navigation in LS becomes less controllable for structural uncertainty; this affects the value
of the Objective Function during optimisation. Structural uncertainty influences compart-
mentalisation, which reflects on the system’s dynamic response.
In Section 5.2.2: Variation of models along the shortest path trajectories in the LS,
we experimentally demonstrated the advantages of Geodesic interpolation over Euclidean.
However, it was noted that such calculations can be computationally expensive (Section
3.6: Inner Geometry of a Latent Space). In this subsection, I will present examples of
Geodesic interpolation in a joint (hybrid) 78d hidden space with complex and heteroge-
neous structure. Based on the conducted analysis, it can be inferred that there is a high
probability that sampling during interpolation will result in varying levels of reconstruc-
tion quality. The discrete nature of the “fault position” property is likely to yield a difficult-
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to-interpret result, as the hidden vector probably does not contain information about the
similarity of fault positions relative to each other. At least, the analysis using PCA, t-SNE,
and TDA did not provide us with information in this regard.
Figure 6.7 illustrates three scenarios of Geodesic interpolation through the hybrid LS with
a discretisation of 10 steps. Let’s illustrate interpolation capacity with three considered
distinct scenarios, depicted as trajectories of different colours. The first row represents the
paths (/,/,/) of interpolation for the spatial (left) and structural (right) hidden spaces.

Figure 6.7: Examples of interpolation (/,/,/) through a hybrid LS. Upper row: LS for spatial uncer-
tainty (left), LS for structural uncertainty (right). Geological realisations ( , , ) reconstructed
using the Decoder according to the interpolation path. Arrows depict the fault location (⇨, ⇨, ⇨)

The first row ( ) illustrates that the volume of the channel facies gradually decreases on
one side and increases on the other. Moreover, the transition of the channel occurs not
through the cube but seemingly outside of it. This can be explained by the fact that ac-
cording to TDA (and visually confirmed by PCA), the 30-dimensional hidden space is
somewhat looped, meaning there is a “bridge” that makes the transition continuous. This
behaviour is partly since the training dataset contains instances where the proportion of
the “channel” facies is very small (the entire channel is seemingly outside the grid). In
general, this property of hidden space should have a positive impact on the AHM process,
as the optimiser will have the ability to transition from one "tail" of the hidden space to
another, even in the case of an unsuccessful initialisation of the optimisation process. This
once again confirms the importance of constructing a prior.
As for the changes in structural features (⇨), the fault almost immediately disappears, and
the grid becomes free of structural disruptions. Only in the last step does a well-defined
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fault and structural inconsistencies appear. This can be explained by the interpolation path
exiting the discrete class of “presence of a fault”; all intermediate steps remained in the
low-density region and then returned to another discrete cloud with a fault in a different
location. In the case of AHM, it means the optimisation process needs to stay within the
validity domain of the LS point cloud to stick to the prior — the presence of a fault.
To track how the channel “travels” through the cube volume, a second interpolation ex-
periment was conducted ( ). It is evident that the channel facie smoothly moves within
the volume. The combination of these two experiments ( , ) confirms the non-Euclidean
nature of the LS, in this case of depositional properties LS, we observe a “ring”.
The structural features (⇨) during interpolation become more predictable. The position of
the fault remains unchanged during the first and last few steps of interpolation, with only
two intermediate steps showing no structural unconformity. However, it should be noted
that the fault does not move across the cube during interpolation but rather disappears
and reappears. This can be explained by the discreteness of this property, which is more
categorical.
The third interpolation example ( ) shows a variation moving through the red “tail” of the
structural latent space. The experiment illustrates a case of falsification, where we limit
the search in the LS. Based on, for example, seismic data, we assume the presence of a
fault but do not know the spatial location of the channel. Therefore, correct interpolation
should preserve the fault in place since the densest area for movement is precisely there.
We see that structural features (⇨) remain unchanged throughout the entire path, while
spatial features change. This fact aligns with our expectations that for proper movement in
the LS, a tool for controlling the realism of property reconstruction is necessary, which in
our case is a density estimation metric, as well as the proper construction of a prior dataset
to support the training of the generative network. To conclude, the trajectories along the
high-density regions of the LS represent the expected change in model representation.

6.3 Uncertainty of dynamic response and history match-
ing under structural uncertainty

To test how the dynamic response depends on structural and spatial uncertainty parame-
terised through the hybrid LS, sensitivity analysis was conducted, similar to Section 5.3:
Uncertainty of dynamic response and history matching. A simulation model was pre-
pared for the experiments with a line drive well scheme, figure 5.11. The fault was defined
as a conducting one to emphasise the importance of displacement. Simulations were per-
formed using tNavigator software by the Rock Flow Dynamics with parameters, presented
in the table 4.2 of the Chapter 4: Modelling uncertainty and datasets construction pro-
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cess. It is important to note that, in addition to the GWAE generated grids of porosity and
permeability properties, GWAE generated structural properties are also incorporated into
the flow simulation model. The Decoder generates an irregular graph on the output, where
nodes only contain active grid cells. Therefore, the reverse operation of adding inactive
cells was necessary before conducting simulations to make the model regular. Currently,
this is a limitation of the approach that requires the implementation of graph-based sim-
ulators (Sanchez-Gonzalez et al., 2020) or simulators capable of working with irregular
grids (Y. Wang et al., 2020).

6.3.1 Uncertainty of dynamic response

To conduct experiments with uncertainty estimation of flow response based on changes of
the hidden coordinate in the region of the hybrid LS ( ), a point in the LS was selected
as the reference ( ) against which the variability of the response was measured. Multiple
alternatives were generated for this by adding Gaussian noise ( ) and the nearest options
from the training dataset ( ). All the hidden model representations were reconstructed by
the Decoder into geological realisations, and simulations were performed, figure 6.8.
For each geological realisation, a map of the average pressures at the last time step of the
calculation is presented, as well as the production profile for production well P3 and injec-
tion well I2 since they almost always intersected with the channel, the rest of the wells are
not presented here because production is zero or negligible due to poor reservoir proper-
ties. It can be seen that factors such as the spatial location of the channel, its continuity, and
structural unconformity in the form of fault and block displacement significantly impact
the flow. Therefore, further experiments with inverse problem solutions are impossible
without considering depositional and structural uncertainty.

6.3.2 History matching through the hybrid latent space

The next step is the conditioned search through the hybrid latent space to solve the inverse
problem. Just like in Chapter 5: Graph Wasserstein Autoencoders and channelized
synthetic case, the conditioned search is based on two types of data: well log curves and
well production data. Information about the presence of a fault and its position is not
provided. Therefore, the dynamic response can be influenced by both the spatial loca-
tion of the channel and structural features. Moreover, the search will be conducted in the
hybrid LS, meaning a 78-dimensional latent model representation consists of two parts
simultaneously. As mentioned earlier, this approach combines uncertainty in two geolog-
ical domains (depositional and structural), enabling optimisation in a unified parametric
space.
The key point for optimisation is the homogeneity and density of the LS. If the part re-

150



6.3. UNCERTAINTY OF DYNAMIC RESPONSE AND HISTORY MATCHING
UNDER STRUCTURAL UNCERTAINTY

Figure 6.8: Visualisation of the uncertainty of the dynamic response of different geological realisa-
tions. A region in the hybrid LS ( ) was selected where the realisation identified as the reference.
Different noise levels were added to the latent vector of the reference, and it was reconstructed by
the Decoder ( ). Additionally, three neighbours were selected in the LS ( ). All these realisations
were simulated; pressure maps and flow rater for wells P3 and I2 are presented.
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sponsible for the uncertainty of the spatial distribution of porous matrix properties appears
homogeneous, then the structural part is likely not, which can be a source of problems. It’s
important to reiterate that the flow response in this case depends on two types of uncer-
tainty - depositional and structural. Hence, even if you manage to find a spatial distribution
of properties to match production history without considering structural features, such a
model won’t have predictive power. In other words, it’s crucial to find a balance between
depositional and structural uncertainty in the optimisation process to adapt the model to
the observed data successfully.
To conduct an experiment of a model history matching in the presence of structural un-
certainty, a reference model with structural unconformity dividing the geological model
into two isolated volumes was selected. I simulate the following scenario: no high-quality
seismic information is available for the studied geological object, resulting in significant
structure uncertainty. Well-log curves indicate the dominance of the channel facies in
some wells. Additionally, production data and tracer studies are also available, which
gives us information about well flow connectivity. One of the examples is presented by
Arnold et al. (2012), where tracer studies data (Produced Water Chemistry) reveals quality
improvement HM and UQ.

NOTE: Tracer studies in wells involve using chemical tracers to track the movement
of fluids within the subsurface. These studies are conducted by injecting a known
quantity of tracer material into a well and monitoring its movement over time. The
tracers can be dyes, radioactive isotopes, or stable isotopes that can be easily de-
tected and quantified. Tracer studies in wells aim to gather information about fluid
flow pathways, connectivity between different reservoir zones, and the efficiency of
various recovery techniques. By analysing the concentration and arrival times of
the tracer at different monitoring points, valuable insights can be gained regarding
the behaviour of fluids in the subsurface.

Before describing the results, it is worth reminding the HM process. I selected an instance
from the prior dataset and extracted static well data in the form of well logs and dynamic
data in the form of production profiles. During the HM process, a family of 78-dimensional
latent geological model representations is sampled, which are then transformed into full-
scale geological realisations by the Decoder. Static and Flow losses are calculated, and
at this stage, an estimation of the density of the hidden space sampling area is known
(Realism loss). According to the Section 3.7: Objective function in HM process, the
HM process performed in two stages, the Static loss is minimised first with realism control,
without evaluating the Flow loss. This saves computational resources since calculating the
Flow loss requires simulations, table 6.1. Generating a geological model is nearly instan-
taneous compared to flow calculations. Therefore, until we find geologically satisfactory
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realisations, there is no need to calculate the flow. Only in the second optimisation stage
is a complete calculation of the OF performed, which includes evaluating the Flow loss,
Static loss, and Realism. Calculating the Static loss and Realism is necessary throughout
the entire process of solving the inverse problem to maintain geological realism.
Table 6.1: CPU resources needed for the first optimisation step with and without Flow loss calcu-
lation

CPU time for: with Flow loss without Flow loss
One model generation (model/sec) 0.07 7

Static opt. stage (min) 616 6

Figure 6.9 illustrates an example of a two-stage inverse problem solution. The realisation,
marked with a is taken as the reference. Four wells (I1, P2, I5, I6) intersected the facies
of the river channel with good reservoir properties. It’s important to note that a fault and
displacement separate the central part of the model, making two blocks isolated. This is
confirmed by the pressure map and streamline scheme. There is a connectivity between
the producing well P2 and the injection wells I5 and I6, while well I1 is isolated.
In the first stage of HM, Static error is minimised with Realism control. Examples of such
realisations are represented by . It’s worth noting that the spatial distribution of the chan-
nel facies is maintained; however, even at this stage, geological realisations do not look
very promising due to the high degree of noise in petrophysical distribution. Structural
features are not represented at all, i.e., no block displacement, so fault can’t be identi-
fied. The heterogeneity of the 78-dimensional space explains this generation quality (it
will be shown in the next chapters that 78 dimensions are not many for the optimisation
algorithm; homogeneity of the LS is much more important). During optimisation, the
algorithm searches for a set of hidden model representations that would minimise the er-
ror. Hence, a trade-off exists between the Static and Realism components of the OF. The
Realism component tries to keep the sampling in dense areas of the LS, preventing the
optimiser from “jumping” from one cloud to another. Moreover, the categorical nature
of the hidden structural representations responsible for the fault position complicates the
search.
When it comes to the flow response of the reservoir, it’s essential to note the connection
between well I1 and P3, which should not exist due to block displacement in the reference
model.

represents realisations after the second stage of HM, taking into account the dynamic
response of the wells. It is noticeable that the quality of geological realisations has de-
teriorated – the channel appears more fragmented. However, the quality of the dynamic
response has improved – the connection between I1 and P3 has disappeared, and the con-
nection between P2 and I5 and I6 has strengthened. This is explained by the fact that the
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Figure 6.9: Results of the two-stage history matching. The left column shows porosity cubes.
The centre column displays pressure maps at the final calculation step. The right column presents
streamline visualisations, reflecting the dynamic connectivity between wells. - reference model.

- examples after the static optimisation stage. - examples after the static and dynamic optimi-
sation stage.
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optimiser found realisations that helped improve the dynamic response. Still, it did so by
isolating wells I1 and P2 and removing the channel facies, thus creating an impermeable
barrier, which was achieved through structural unconformity in the reference model. This
result again highlights the importance of constructing a homogeneous latent space that
accounts for structural uncertainty.
Figure 6.10 shows a more detailed HM with the example of wells P2, I5. It is worth
noting that the optimiser could not perfectly match the static distribution of porosity along
the wellbore, as well as the production and injection rates. However, the static matching
stage captured the trends in property distribution — it is noticeable that along the wellbore
of well P5, high porosity values prevail in the upper part of the reservoir, while porosity is
almost absent in the lower part, which is consistent with the reference model data. Since
the dynamic error is not calculated at this stage, the production data differs significantly
from the reference model.
During the dynamic HM stage, production data match was significantly improved without
critical loss in the quality of static property distribution along the wellbore. However, it is
worth noting that the overall geological realism decreased due to increased Realism error.
To summarise the model HM process under structural uncertainty, the optimisation pro-
cess was able to reproduce the main depositional features of the reference geological
model. The trend of channel facies distribution and compartmentalisation of blocks was
achieved. However, unlike the reference model, compartmentalisation was achieved by
interrupting channel propagation rather than through structural inconsistencies. As for
local properties in wells, there is also convergence with the overall trends, but a detailed
match was not achieved.

Figure 6.10: Examples of wells P2 and I5 match are marked in green for optimization after the
static stage and in blue for HM after the entire optimisation process. Reference is depicted by the
red colour, gray - initial optimisation step. Top: dynamic mode response. Bottom: static well data
match for each model layer.
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6.4 Conclusion

In this chapter, the generative capabilities of GWAE were tested using geological settings
that include structural uncertainty and uncertainty in porous property distribution. For
this purpose, two generative networks were trained independently, one responsible for
the structural features of the reservoir and the other for filling the generated model with
properties.
The analysis of the hybrid LS, consisting of structural and depositional components, showed
that the depositional part of the latent space forms a ring. Similarly to what FLUVIAL ex-
ample demonstrated in Chapter 5: Graph Wasserstein Autoencoders and channelized
synthetic case, by interpolating along this ring, instances with predictable channel loca-
tions can be generated. The second part of the hybrid LS, responsible for the structural
unconformities, showed high heterogeneity due to the categorical nature of the features
related to fault positions. Interpolation between regions of the LS is possible but usually
leads to the disappearance of structural features (i.e. presence of fault and block displace-
ment) in the generated realisations at intermediate steps. Overall, the generative capabili-
ties of the hybrid GWAE allow us to conclude that by staying in dense regions of the LS,
we can expect high-quality realisations that reflect both structural and spatial uncertainty.
The experiments on matching the model confirmed conclusions that geological realism
control is a key factor in the Decoder’s performance quality. Global trends in property
distribution and flow connectivity between wells were reproduced, but this was achieved
by partitioning the channel into parts rather than through structural features. In many ways,
this was achieved through a trade-off between minimising the error in reproducing static
properties along the well, dynamic well response, and overall realism control. However,
finding an implementation close to the reference was hindered by the heterogeneity of the
hidden space. In general, it is worth noting that a key factor in ensuring the generative
capabilities of GWAE is not only the architecture of the network itself and the choice of
the dimensionality of the hidden space but, above all, the internal structure of the prior.
If the prior has a heterogeneous structure, this will affect the generative capabilities of
the network, as regions poorly covered by training examples will produce low-quality and
unpredictable results.
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Chapter 7

Graph Wasserstein Autoencoders for
AHM Brugge case

Chapters Graph Wasserstein Autoencoders and channelized synthetic case and Graph
Wasserstein Autoencoders and fault synthetic case demonstrated the generative capa-
bilities of graph neural networks using simple geological settings. Experiments were con-
ducted to test the effectiveness of the approach applied to cases that represent uncertainty
of geomodelling parameters across different geological scenarios and structural uncer-
tainty.
This chapter aims to examine the generative capabilities of GWAE in a more geologically
realistic model description of heterogeneity of porous properties. A semi-synthetic bench-
mark case of the Brugge field was chosen for history matching. The field data is presented
in Section 4.3: Brugge benchmark.

7.1 GWAE under uncertainty of modelling approach

Brugge reservoir comprises four stratigraphic zones (Schelde, Maas, Waal, Schie), each
characterised by geological uncertainty. In this work, I primarily focused on uncertainty
related to geological reservoir characteristics. I built a prior training dataset based on our
understanding of the reservoir and key uncertainty that may later influence any decision-
making process. However, in constructing the prior, I utilised well-known geostatistical
algorithms, each with advantages and limitations. This raises the question of how we
would know which specific algorithm is suitable for modelling our prior. To what extent
do the modelling algorithm assumptions constrain our prior dataset? Can we use a combi-
nation of geostatistical modelling algorithms to construct the prior, and how will it impact
the generative capabilities of GWAE? While the first two questions have a more general
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theoretical nature, we will attempt to answer the third question through experimentation.
Brugge TNO prior ensemble utilises two geostatistical algorithmic scenarios: SIS/SGS
and Object Modelling/SGS for modelling fluvial depositional environment in the upper
zone Schelde. Examples of training dataset instances are shown in figure 4.16. Therefore,
I trained the generative network using the training dataset composed of a combination of
2500 instances of Object Modelling and 2500 instances of SIS for the Schelde layer.

7.1.1 Combined LS analysis

The visualisation of the LS generated as a result of training the GWAE model is presented
in figure 7.1. The dimensionality of the hidden space is 100.

Figure 7.1: from left to right: PCA, t-SNE and TDA visualisation of the combined LS for Schelde
zone. - region of SIS samples; - the region of Object Modelling samples.

In the PCA projection, two distinct clusters of points can be observed, which are signifi-
cantly separated from each other. The colouring of these clusters reflects the affiliation of
the hidden vector to a specific type of geostatistical modelling algorithm — SIS or Object
Modelling. The t-SNE projection is presented as a densely packed cloud composed of
two hemispheres. However, it is worth noting that without additional labelling, it would
be difficult to determine that the space is divided into hemispheres. In other words, if we
did not know the structure of the training dataset in advance, determining such a structure
through t-SNE projection would be practically impossible. TDA analysis also provides a
reasonably clear answer about the internal structure of the latent space. It is divided into
two large regions, each with a different density. When looking at the 𝐻0 space, the lower
cluster of points corresponds to SIS realisations, which are tightly packed together, likely
representing quite similar objects. The second cluster of points is more sparse and pertains
to the part of the space associated with Object Modelling.
Based on the analogy with Chapter 6: Graph Wasserstein Autoencoders and fault
synthetic case, it can be concluded that such a discrete hidden space presents a challenge
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for further tasks related to HM. There is a need for a tool to “teleport” from one cloud
to another or a tool that can make the LS a unified dense object (Drozdova et al., 2021;
Giovanis et al., 2024).

7.1.2 Generative quality of GWAE with combined dataset

To assess the generative ability of the GWAE trained on the combined dataset, I selected
an instance of a training sample in the hidden space, which was initially generated using
the Object Modelling method. Then I reconstructed it using the Decoder.
Figure 7.2 shows an example of a training sample of porosity and permeability cubes
generated using the Object Modelling method. This sample was then encoded into a 100-
dimensional model representation in the LS and decoded back to the original represen-
tation using the trained GWAE. As can be seen, the spatial features were completely lost
and resembled the reproduction of the SIS method, which is based on variograms. How-
ever, it is worth noting that the porosity-permeability relationship was reproduced in the
reservoir values after decoding. It is important to note that Object Modelling utilises two
facies: river channel (sand) and shale. For the shale facies, which do not act as a reservoir,
all porosity and permeability values were taken as constants, as seen on the dependency
graph. In SIS modelling, facies were not explicitly used, and properties were distributed
according to variograms. The GWAE captured a more global and continuous poro/perm
dependency during training. It should be noted that, in practice, before flow modelling, a
cut-off is often applied to eliminate cells with poor reservoir properties that have minimal
influence on flow. This cut-off replaces all cells below a certain threshold of porosity or
permeability with a constant value. Therefore, the green tail in the low porosity values
would still be cut off as a non-reservoir.

Figure 7.2: - example of porosity and permeability grids from the training dataset, modelled by
Object Modelling approach; - GWAE generated sample, which should be close to the training
example. Right: porosity/ log(permeability) dependency for true and GWAE generated samples
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Based on the conducted experiment, it can be concluded that the GWAE model could not
effectively learn to reproduce the training samples with the desired level of geological
realism. This was primarily due to the inherent structure of the training dataset, which
consisted of two distinct groups of scenarios that had no overlap. During training, the LS
was divided into two clouds, but the hidden vectors were not informative enough for the
Decoder to perform accurate generation. This experiment demonstrated that if the internal
structure of the prior training dataset is discrete, it is better to train separate generative net-
works for each discrete group rather than attempting to train a single universal generator.
Another approach would be creating continuous prior datasets where one class smoothly
transitions into another, as shown in the Chapter 5: Graph Wasserstein Autoencoders
and channelized synthetic case.

7.2 Generative quality of GWAE with Brugge dataset

Céline Scheidt (2018) discusses the concepts of epistemic uncertainty, fuzzy logic, and
vagueness. Epistemic uncertainty refers to the uncertainty that arises in the process of
forming scientific knowledge and research. They demonstrate that scientific knowledge
always contains a degree of uncertainty, which is associated with the limitations of our cog-
nitive abilities and the insufficiency of information or incomplete observability. They also
address fuzzy logic, a theory that formally describes fuzzy concepts and fuzzy sets. Fuzzy
logic allows for considering uncertainty and fuzziness in problem-solving, where logic
and traditional methods are applied. Vagueness is related to uncertainty in language and
concepts. Vagueness describes a situation where the boundaries of concepts are blurred
or vaguely defined, which can create difficulties in precisely defining and understanding
these concepts. These concepts enable us to build more realistic and adaptive models and
research methods.
In geoscience, classification systems like depositional environments (deltaic deposits, flu-
vial deposits and so on) are extensively utilised. However, it is crucial to acknowledge
that these classifications are human-made constructs, which introduces vagueness into the
equation. The difficulty lies not just in establishing precise boundaries but also in the se-
quence and variants. As a result, inherent ambiguity arises when determining the point
where the delta ends and the river channel begins. Furthermore, geologists may provide
interpretations based on their personal experiences and levels of expertise, leading to a
range of perspectives on the nature of “deltaic” phenomena. Fuzzy logic, unlike a binary
approach of simply voting “for” or “against”, enables a more nuanced evaluation from
each participant, allowing for a smoother transition between the two classifications.
In my work, the prior is constructed from the perspective of precise classification: this zone
corresponds to a fluvial setting (Schelde), this one to the upper shoreface (Waal), and this
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one to the lower shoreface (Maas) with defined boundaries. In reality, these boundaries do
not exist in nature, so such an approach to constructing the prior initially restricts our un-
derstanding of the reservoir and subsequent modelling. It is worth noting that constructing
the prior using fuzzy logic approaches is a complex task that requires separate research.
Thus, to overcome the limitations imposed by the categorical nature of the training dataset,
four separate GWAEs were trained for each zone (Schelde, Maas, Waal, Schie), with LS
dimensions of 30, 50, 30, and 50, respectively. The overall dimensionality of the hybrid
LS is 160.
Figure 7.3 demonstrates the quality of generating geological realisations for each of the
four generative neural networks using the example of porosity property. Each row of the
figure represents a specific zone, with the original instance from the training dataset ( ) and
the reconstructed realisation using GWAE ( ). Only the first layer of each zone is clearly
visible in the figure, so to show that the properties are correctly reproduced throughout
the volume, I subtracted the reference instance from the generated one ( ). The histogram
shows that the error of reproducing the porosity property is normally distributed with an
average of zero. The porosity-permeability relationship is also accurately reproduced with
a high level of quality and was implicitly identified by the neural network, hence it is re-
produced with noise. To confirm the correctness of the property distribution spatially and
in depth, the following figure 7.4 shows a cross-section of porosity property between wells
BR-P-15 and BR-P-16 of the same original instance and a reconstructed realisation using
GWAE. As can be seen, the wells are located on different sides of the fault. Overall, it can
be seen that regardless of the depositional environment and reservoir volume, each GWAE
was able to learn to generate objects. The variogram analysis shows a resemblance of the
initial and reconstructed spatial distribution of porosity properties for each zone, figure
7.5. In addition, an increase in the nugget parameter for the variogram of the difference
between the porosity cubes of the original and reconstructed models indicates a high level
of variation at a small scale. Combined with a quick approach to sill, this indicates a weak
spatial dependence of error propagation.
Therefore, such an ensemble of GWAEs can be further used to solve the inverse problem.
It is important to note that this ensemble approach is applicable only in the case of zone
independence, i.e., the realisation of Schelde should not affect Maas and so on. When
zones depend on each other, it is necessary to train GWAE crosswise or train one extensive
network (the limitations of such an approach have already been highlighted).

7.2.1 LS analysis

The analysis of the internal structure of generative networks’ LSs for each depositional
environment layer did not reveal any significant features. Due to the prior dataset being
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Figure 7.3: Examples of the initial , decoded reconstruction of each horizon. Their difference
. Porosity/Log(Permeability) dependency

Figure 7.4: Left: the map of Brugge field to locate the cross-section position between wells BR-P-
15 and BR-P-16. Centre: Cross-section of the initial realisation . Right: decoded reconstruction

of each horizon
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Figure 7.5: Variograms of initial porosity property - and decoded reconstruction - for each
horizon. Varioram of the error of reconstruction -

generated as a unified distribution, it becomes challenging to visually identify any patterns
or regularities in the structure of the LS. The complexity of geological objects has made
it difficult for three-dimensional mapping of the multidimensional set of hidden model
locations in the LS to reveal any specific visual correlations. Figure 7.6 (left column)
shows an example of the LS in the PCA and t-SNE projections for the Schelde zone. It
is worth noting that the three principal components of the PCA projection contain 18, 12,
12, 12, 7 per cent of the total variation for Schelde, Maas, Waal and Schie respectively.
Providing visualisations for other zones is not meaningful because they look similar. The
colouring reflects the variation of one of the uncertainty parameters, and this colouring
does not change globally when the uncertainty parameter is changed. Thus, it can be
concluded that each hidden space of the generative network has a homogeneous structure,
which is a good sign for solving the inverse problem. As for the internal structure, it was
not possible to identify it.
It is worth noting the visualisation of TDA. In the 𝐻0 projection, it is noticeable that
points accumulate in certain intervals for each hidden space, which differ significantly.
Two factors can explain this: firstly, each hidden space has its density, i.e., connected
components start to appear and disappear when reaching the radii of multidimensional
spheres of different sizes. Secondly, the dimensions of the hidden spaces for Schelde and
Waal are 30, while Maas and Schie are 50. Therefore, the original dimensionality makes
densities different. Additionally, for the 𝐻1 projection of Schelde and Schie, we can see
a clear indication of a global structure in the form of a ring, as there are points noticeably
deviating from the diagonal.

7.3 HM of Brugge field with GWAE

The Brugge is a valuable benchmark for testing and comparing techniques in history
matching, production optimisation, and closed-loop optimisation. Its widespread use in
literature underscores its significance. The benchmark’s key attributes that enhance its
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Figure 7.6: The left column: the visualisation of the LS using PCA (top) and t-SNE (bottom) pro-
jections for the Schelde zone. The colouring represents the variation of one uncertainty parameter.
The left part shows the visualisation of the LS using TDA projection for all four zones. It is worth
noting the homogeneity of the density of each LS and the difference in densities between the LS.

utility for history matching include the substantial scale of the problem, the abundance of
data, and the intricate nature of the detailed truth model, leading to realistic challenges.
Regarding optimisation, the effectiveness of the Brugge field case is due to the complexity
and uncertainty of the reservoir model, the need to optimise multiple control parameters,
and the presence of numerous constraints governing these variables.
Schulze-Riegert et al. (2017) investigated the Ensemble Kalman Filter (EnKF) (Aanonsen
et al., 2009) approach for field HM. The approach consists of a prediction phase and an
assimilation phase, where the variables characterising the state of the system are adjusted
according to observations. The geological model is represented as a vector containing
porosity, permeability and NTG data, which are used to predict the dynamic response.
The predicted data may include bottomhole pressure, water recovery, gas-oil ratio, etc.
Mohamed et al. (2010) explores the utilisation of Particle Swarm Optimization (PSO) al-
gorithm in history matching the Brugge reservoir. PSO is employed to discover a variety
of history-matched models for the Brugge reservoir, assessing uncertainty in production
forecasts. The paper delves into the parameters and workflow for history matching, in-
corporating the use of PCA for parameterisation. By comparing with EnKF, the paper
demonstrates PSO’s capability to address large history matching challenges and achieve
comparable outcomes. It concludes that both PSO and EnKF have their own strengths
and weaknesses, with each algorithm being suitable for specific problems. However, both
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methods are noted to suffer from a lack of geological realism during the matching process.
Demyanov et al. (2015) proposes an approach to Brugge HM using a Multiple Kernel
Learning (MKL) approach with PSO that integrates different types of data (such as seis-
mic, well data and geological concepts). The approach has an important advantage com-
pared to EnKF and PCA-PSO, as it allows to obtain interpretable parameters, and to deter-
mine the importance of each of them. As in previous papers, the authors use the algorithm
to model the porosity and permeability fields, and PSO was used as the optimiser. As a
result, the quality of the HM was similar or superior to previous works.
Chalub et al. (2023) and Cruz et al. (2022) have combined production, tracer, and 4D
seismic data to calibrate reservoir models, improving forecasting accuracy. Their flexi-
ble workflow can incorporate various data types for further enhancements. This research
highlights the benefits of using multiple datasets in history matching, showing that the
integrated approach is valuable for field studies. The study employed the Iterative Ensem-
ble Smoother based on a Regularized Levenberg-Marquardt Algorithm (IES-RLM) as a
history matching method. This method aims to generate a set of reservoir models that
closely minimise nonlinear least squares without requiring simulator restarts and involv-
ing fewer model variables updates during history matching compared to EnKF. Practical
implementation of IES-RLM is considered simpler than EnKF for history matching tasks,
and empirical evidence suggests that IES-RLM outperforms EnKF and ES. A key focus
and contribution of this study is to showcase the advantages of integrating tracer and 4D
seismic data alongside production data in an ensemble-based history matching workflow
through a 3D field-scale case study.

Figure 7.7: General scheme of inverse modelling
through the hybrid LS. The hybrid LS consists of
four regions ( ) for each stratigraphic zone.
Latent vectors are sampled and fed into a stack
of Decoders to generate geological realisations.
After OF assessment, the optimiser made the next
step in the LS.

Before starting the description and anal-
ysis of the results of the HM process of
the Brugge model through the hybrid hid-
den space, let’s briefly describe the princi-
ple scheme, figure 7.7. During the training
process, every grid from the dataset was
converted into graph representation and fed
into the GWAE model. GWAE was trained
for each horizon, resulting in a set of 4 gen-
erative networks. I plug the trained compo-
sition of GWAE model generator into the
history matching framework where the op-
timisation is done by sampling from the
lower dimensional latent space, then generating new models through decoding. The opti-
miser looks to generate new models (porosity and permeability properties) in the LS that
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comprise a graph for every horizon and comes up with the match solution by stacking
graphs into the stratigraphic succession. Usually, there is no guarantee that the AHM will
provide an ensemble of solutions that would infer the response of the unknown. Ideally,
our prior should be constructed in such a way as to cover the entire space of uncertainty
and include an unknown geological representation which we are trying to find. If this
does not happen, the “true” geology is outside the hidden space, and the generator will not
reproduce it.
I picked the reference model, which will be considered unknown except for petrophysical
and production well data. The Covariance-Matrix Adaptation Evolution Strategy opti-
misation algorithm was chosen to search the latent space. After the CMA-ES step, the
algorithm generates a new set of latent vectors for decoding until convergence.
I implemented two-stage optimisations. In the first stage, the optimiser minimises the
MSE error between static well log data of the reference model and GWAE generated rep-
resentations, which is relatively fast because it goes without any simulation process. In
the second stage, I optimise in the vicinity of the found solution by minimising the MSE
of both the static log data and dynamic production of water and oil fluid, figure 7.8.

Figure 7.8: Visualisation of the dynamics of error change by components during the HM process.
Left: Static error; Center: Dynamic error; Right: Realism error

Three optimisation processes were launched to obtain a set of models that allow assessing
the uncertainty of property distribution and dynamic response. If necessary, more such
processes can be conducted. The matching results, i.e. the search through the hybrid hid-
den space of the reference model, are shown in figure 7.9 (left column). The right part of
the figure represents the visualisation of the distribution of recovered porosity properties
for each zone. It should be noted that the obtained property distribution for the Schelde
and Schie zones turned out to be quite noisy, as the training datasets for these zones ex-
hibit a high degree of heterogeneity in property distribution, making spatial dependencies
challenging to trace. In addition, the low reservoir quality provides a small portion of
production from these zones. Therefore, the variation of hidden positions has little influ-
ence on the overall assessment of the loss function. The realisations of the Maas zone
turned out to be practically identical to the reference model. The recovered realisations
of the Waal zone are characterised by similarity in property distribution trends across the

166



7.3. HM OF BRUGGE FIELD WITH GWAE

reservoir, with minor local differences.

Figure 7.9: Left: A prior ( ) of geological realisations represented in the LS (PCA representation).
- location of the reference model in the latent space. - locations of GWAE realisations. Centre:

The visualisation of porosity properties for the reference model ( ). Right: variants found during
the optimisation process ( ).

Variogram analysis showed that despite the wide range of variograms in the prior distri-
bution ( ) for each zone, the optimisation process achieved very close convergence of the
variograms generated by GWAE ( ) with the reference model ( ), figure 7.10. Let’s focus
on some specific points. The nugget parameter for the Schelde zone is around 0.4 − 0.5,
indicating high variability in properties at small scales, i.e. the absence of short-scale con-
tinuity, which indicates abrupt changes in rock properties. In the case of the Schelde zone,
this is due to fluvial sedimentation. The variogram for the Maas zone does not reach the
sill and has a wavy character. The first sign indicates zonal anisotropy, which is an indi-
cator of cyclicality. The waviness confirms this conclusion. A similar conclusion about
cyclicality at large scales can be drawn for the Waal zone, although zonal anisotropy is not
observed. The nugget parameter for the Schie zone in the reference model is around 0.45,
but the same parameter for GWAE implementations is significantly higher — 0.6 − 0.7.
This indicates that the optimised implementations have become much “noisier” than the
reference. This confirms some loss of geological realism for the Schie formation, as I
mentioned earlier. Variogram analysis was conducted for all zones with the following set-
tings: standardisation (Sill = 1), isotropic, number of lags = 10, search radius = 3000.
Type of variogram — Classical, defined as half of the average squared difference between
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the paired data values.

Figure 7.10: Variograms of porosity distribution for four zones of the Bruges field, where -
prior/initial samples for the optimisation process, - reference model variogram, - GWAE opti-
mised solutions

Table 7.1 presents the statistical parameters of porosity for each zone and the percentage
of total fluid production for each zone. Here, a high level of similarity in the parameters
of mean and standard deviation is observed for all zones. At the same time, pore volume
and production may vary due to uncertainty in property distribution in the inter-well space
and can be considered as uncertainty.

Table 7.1: Main characteristics of porosity property

Realisation Av Poro*
(frac) Std Poro Pore Vol

(𝑚3106)
Abs Err

(%)
% of Total
Fluid Prod

Schelde
Reference 0.21 0.04 53 − 17

GWAE optimised 0.20 0.04 48 9 13
GWAE optimised 0.20 0.04 49 8 13
GWAE optimised 0.20 0.04 47 11 15

Maas
Reference 0.16 0.04 80 − 7

GWAE optimised 0.16 0.03 77 4 8
GWAE optimised 0.16 0.03 77 4 8
GWAE optimised 0.16 0.03 77 4 8

Waal
Reference 0.23 0.03 195 − 76

GWAE optimised 0.24 0.02 197 1 79
GWAE optimised 0.24 0.02 198 2 80
GWAE optimised 0.24 0.02 198 2 77

Schie
Reference 0.18 0.06 25 − < 1

GWAE optimised 0.18 0.04 23 8 < 1
GWAE optimised 0.19 0.05 27 8 < 1
GWAE optimised 0.18 0.04 24 4 < 1
*Average values for sand only,
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The following figure 7.11 illustrates the matching of the dynamic response for the entire
reservoir and the wells PR-P-2, PR-P-15, and PR-P-18 as examples. The gray colour rep-
resents examples from the prior ensemble of models from which the optimisation process
started. There is a slight variation in the dynamic response for oil and water production
rates across the field. This can be explained by the fact that the main production zone
in the Brugge field is the Waal zone, which exhibits consistent properties throughout the
reservoir. However, the initial set of models for individual wells has a much wider range
of variation.
It is worth mentioning that the entire HM process is provided by adjusting the distributions
of porosity and permeability properties while implicitly preserving their dependencies.
Parameters such as relative permeability, which influences the flow ratio of phases (oil,
water), remained unchanged. Therefore, there is an imbalance in the matching of oil and
water production observed in all the depicted wells.

Figure 7.11: Profiles of field and wells PR-P-18, PR-P-15, PR-P-2 production of oil and water in
comparison to reference dynamic response)

Figure 7.12 shows the porosity property profiles along the PR-P-2, PR-P-15, and PR-P-18
well bores. There is a very high similarity between the models found by the optimisation
process and the reference for all zones. Here, it is worth referring to the work of Ringrose
et al. (2015), where he distinguishes between the concepts of hard and soft conditioning
using seismic data as an example. Hard conditioning refers to a method where high-quality
seismic data, which is sufficiently resolved at the scale of interest, is directly used to define
the architecture of the reservoir model. This approach is applicable when seismic data can
accurately represent important elements of the model, such as seismic geobodies. On the
other hand, soft conditioning involves using seismic information as a general guide for
probabilistic algorithms. Instead of directly defining the reservoir model, the seismic data
provides a general understanding or correlation coefficient that guides the probabilistic
algorithms in creating the model.
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Regarding well-log data, something must be between hard and soft conditioning. Since
the vertical and horizontal resolution of well-logs is only a few tens of centimetres, and
they are assigned to a single value per cell, which is much larger than the resolution, it is
not accurate to say that well-log can reproduce the properties of the entire rock volume of
a cell. On the other hand, using soft conditioning only to track property trends is not the
optimal use of well-logging data either. Therefore, it is worth allowing some deviations
in the generated properties along the wellbore and interpreting them as uncertainty.
It is worth noting that a distinguishing feature of machine learning methods, compared to
standard geostatistics, is that ML approaches allow for this intermediate conditioning. In
contrast, geostatistics treats well-logs as hard data and rigidly constrains the model to the
available well data without allowing for deviations.

Figure 7.12: Profiles of field and wells PR-P-18, PR-P-15, PR-P-2 production of oil and water in
comparison to reference dynamic response)

It can be concluded that the HM framework using the adjustment of porosity and perme-
ability properties does not allow for achieving perfect convergence since it does not pro-
vide variation in phase production (water, oil). Additionally, reservoirs such as Schelde
and Schie were generated with a noticeable level of noise, indicating that the weight on
the geological realism component of the OF could be increased, possibly at the expense
of the other two components. However, the search for HM models using a generative
model family and a combined (hybrid) latent space of dimensionality 160 allowed finding
realisations that meet both static requirements (similarity of well log curves) and dynamic
response (production rates of oil and water).
Demyanov et al. (2015) presented a comparative analysis of the quality of HM of the
Brugge field using MKL with PSO, PCA with PSO and EnKF methods. Unfortunately,
Chalub et al. (2023) and Cruz et al. (2022) do not provide information about the quality of
HM for all wells (only the quality of prediction), so these papers are not given in this study.
Following figure 7.13 complements the analysis with the results of the GWAE. It should
be noted that the comparison is qualitative rather than quantitative. It is noticeable that in
general the GWAE approach outperforms previous solutions. At the same time, it allows
to preserve and control the geological realism of the spatial distribution of properties.
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Figure 7.13: A cross-well comparison of the HM quality (good, fair and poor match) of the four
methods: - GWAE, - MKL, - PSO/PCA, - EnKF. It can be seen from the comparison that
in general, the proposed approach outperforms the previous methods.

7.4 Uncertainty of Prediction

Each geological model is created to make investment decisions based on it, such as locat-
ing remaining reserves, well drilling planning, or evaluating the effectiveness of reservoir
pressure maintenance systems. Multivariate flow simulations allow for uncertainty to be
considered that may impact the project’s economic feasibility. Flow response predictions
were performed on the HM model to conduct such an analysis.
To evaluate the calibrated models under different production modes and to assess the un-
certainty of the forecast I considered three different scenarios. The first scenario assumes
fixing the bottom hole pressure of production and injection wells at the last step of the
historical calculation. The second scenario assumes an increase of reservoir draw-down
pressure. This was achieved by decreasing the bottom hole pressure of the producing wells
by 10 per cent relative to the last step of the historical calculation and increasing the bot-
tom hole pressure of the injection wells by 10 per cent. The third scenario simulates the
opposite mode, where the draw-down pressure is reduced. The bottom hole pressure of
the production wells is increased and for injection wells is reduced by 10 per cent.
Then, all wells were put under pressure control and run for a 5-year calculation. As a result,
oil and water production rates (figure 7.14), as well as average saturation (𝑆𝑜) (figure 7.15)
and reservoir pressures (𝑃𝑟𝑒𝑠) maps (figure 7.16) at the last calculation step, were obtained
for the reference model and three GWAE models for every scenario. It is important to note
that all maps were put in the same scales to provide visual comparison.
Based on figure 7.14, it is evident that the oil and water production profiles for the forecast
period are very similar between the reference model and the generated GWAE models.
This suggests that the expected production can be anticipated with high confidence. How-
ever, some local differences are observed in the pressure and saturation maps, particularly
in the reservoir dome and in the water-saturated region to the south. These variations indi-
cate that despite the overall similarity in the maps, there are differences in the reservoir’s
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Figure 7.14: Field oil and water production profiles considering the 5-year prediction for every
production mode (scenario).

Figure 7.15: Maps of average oil saturation (𝑆𝑜) at the last time step for the reference model and
GWAE generated models. Note: all maps are in the same scales.

Figure 7.16: Maps of average reservoir pressure (𝑃𝑟𝑒𝑠) at the last time step for the reference model
and GWAE generated models. Note: all maps are in the same scales.
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energy that may impact investment decisions.
For instance, different pressure depletion levels in the reservoir dome can be crucial for var-
ious technological measures in wells, such as reducing draw-down pressure on the reser-
voir or deciding to convert a producing well into an injection well. Similarly, variations in
the maps within the water-saturated region can serve as a basis for optimising the reser-
voir pressure maintenance system by adjusting injection levels or shutting down injection
wells.

7.5 Conclusion

This chapter conducted experiments to test the generative capability of GWAE using the
semi-synthetic Brugge reservoir as an example.
The importance of analysing and understanding the internal structure of the prior dataset
was demonstrated. As an example, a hybrid prior training dataset was constructed for the
Schelde zone, consisting of 50% realisations generated using the SIS method and 50% cre-
ated using Object Modelling. The GWAE was trained on this dataset, and it was shown that
the structure of the LS split into two unconnected clouds, which is an undesirable effect for
solving the inverse problem. Moreover, the generative model showed low-quality results
and was unable to reproduce realisations that matched the Object Modelling method.
Since the prior dataset for each Brugge zone represents a separate stratigraphy setting and
zones are independent of each other (which is inconsistent with real geology), a particular
generative model was trained for each zone. This set of GWAEs can independently gen-
erate property distribution for each zone and stack the resulting geological realisations on
top of each other to conduct model HM process. The analysis of the latent spaces of each
generative model revealed that each LS represents a homogeneous cloud of points with an
internal structure that cannot be discerned with current tools. However, the homogeneity
of the latent space allows it to be used for solving the inverse problem.
The HM experiment demonstrated the effectiveness of the proposed approach. Overall
model and well-level match were achieved as the optimisation algorithm correctly matched
production data and porosity profiles along the well bore. Moreover, the implicit depen-
dency of porosity and permeability was correctly identified.
At this stage of development, using a set of generative models seems to be the optimal
solution for adapting models with complex stratigraphy. The concepts of epistemic uncer-
tainty, fuzzy logic, and vagueness provide a foundation for the next step for realistic and
adaptive models and research methods in geoscience.
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Chapter 8

Conclusion and future work

8.1 Conclusion

The aim of the work was to investigate and develop approaches to geological modelling
and model conditioning in a single parametric domain. This domain describes uncertain
characteristics of a geological object, such as depositional and structural. The accounting
of uncertainty in various geological scenarios, structural uncertainty, and uncertainty re-
lated to the inter-dependencies of petrophysical parameters is generally resolved through
multivariate modelling. This approach is often limited to the unique sets of parameters that
correspond to a specific geological scenarios and explicit parameter dependencies. The
unique set of parameters to describe a geomodel is subjective and introduces the particu-
lar model uncertainty related to the model definition, equations and parametrisation. This
brings further constraints to tuning models to data - a given parametrisation may be more
or less prone to match data. Fixed parametrisation also may lead to biases and overlook-
ing the aspect of the model not captured by the parameters and therefore under represent
uncertainty. To address this challenge, a learning-based approach for a single learning
based parameterisation through implicit low-dimensional hidden space latent space was
considered.
Based on the literature review, the Variational Autoencoder generative learning approach
was chosen as the base tool for parameterising the prior set of geological representations,
considering the uncertainty of various kinds. The main idea behind using this approach
was to parameterise the ensemble of prior geological realisations with an Encoder into a
latent space that implicitly describes the prior uncertainty space. Then, the constructed
LS, in combination with the Decoder, is used as a generator to search for the necessary
realisations to condition the model to both static and dynamic data. The considered tasks
included uncertainty estimation of dynamic response and HM.
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The thesis presents the new GWAE approach, compares its performance with conventional
VAE and its improved flavour WAE. The thesis shows how GWAE helps to overcome the
limitations of VAE and WAE, such as blurriness and inability to account for structural
inconsistencies of complex-shaped objects. Conceptually, such a transition to graph-based
generative modelling allowed moving from Euclidean data types to non-Euclidean data,
i.e., data that did not have a regular structure. In fact, the GWAE architecture allows
taking into account the structural and spatial features of the reservoir by moving away
from the classical lattice representation. Compared to standard geostatistical approaches,
the GWAE bypasses limitations such as the stationarity assumption, linearity and hard
data conditioning.
For a more effective use of generative models, it is necessary to understand the internal
structure of the hidden space, as the structure is fundamental to the process of finding the
latent representation of a geological model with respect to the conditioning data. I have
conducted advanced analytics of the internal structure of hidden spaces for different en-
sembles of reservoir models with PCA, t-SNE, and TDA. The use of the aforementioned
tools has resulted in several conclusions regarding the suitability and existing constraints
of utilising the GWAE. It was found that the key property of the latent space is its global
continuity, since the optimisation process must take place in "dense" regions to ensure ge-
ological realism. If the latent space can be decoupled into two or more continuous parts,
the optimization process can be conducted in those segments in parallel. This would re-
flect the categorical nature of multiple geological concepts. In addition, the structure of
the latent space reflected the grouping of latent representations of geological realisations
with respect to different geological components, such as the number of channels, channel
position, and fault position. TDA revealed the ring structure of the STRUCTURAL prior
dataset, which partly explains the spatial position of the channel in the Geodesic interpo-
lation experiment. A Geodesic metric was introduced for efficient navigation in the high-
dimensional hidden space, because LS has complex non-Euclidean structure (Arvanitidis
et al., 2021). This metric was tested on the example of interpolation and showed a more
favourable behaviour compared to the standard Euclidean metric. Moreover, the Geodesic
metric served as the basis for subsequent control of geological realism in the LS.
For solving the inverse problem, a three-component OF was introduced. The first compo-
nent was responsible for controlling the static properties along the wellbore, the second
component for the dynamic response of the well, and the third component for the overall
realism of the geological realisation. This was achieved by calculating the density in the
region of the hidden space. In case of its decrease, the optimiser was penalised, as it was
assumed that the process begins to generate realisations with reduced geological realism
by transitioning into less dense (probable) regions. This type of loss function allows the
optimisation process to be carried out in stages, where in the first stage the static error is
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minimised with realism control, allowing the first approximation of the model to be set up
without expensive flow simulations. In the second stage, the target loss consists of three
components, then the optimisation already takes place in a more compact subspace.
To test the generative capabilities of GWAE, three prior datasets of 3D geological objects
were developed: FLUVIAL, STRUCTURAL, BRUGGE. The three data sets served differ-
ent purposes. The comparative study of VAE, WAE and GWAE was performed to reveal
limitations and advantages of approaches to generate geologically consistent representa-
tions. The FLUVIAL dataset models an object whose main uncertainty is the geologi-
cal depositional scenario of the quantity and shape of fluvial channels. The experiment
showed that GWAE parameterised such a prior. The internal structure of the LS featuring
the number and spatial placement of the channel as global properties, allowed efficient
navigation and solving the inverse problem.
The STRUCTURAL dataset combines two different types of geological uncertainty: de-
positional with respect to channel object and structural associated with a fault in a simple
synthetic example. The structural uncertainty includes the position of a fault and the dis-
placement of blocks. Depositional uncertainty includes the geometry and position of a
channel. The analysis of the generative model’s hidden space revealed discretisation con-
nected with fault position. This is due to the discrete location of the fault in the training
dataset, i.e., the fault takes one of 15 discrete positions for each geological realisation in
the prior. This discretisation was reflected in the structure of the hidden space and sub-
sequently manifested in navigation and solving the inverse problem. In addition, block
displacement relative to the fault was also varied to break connectivity. The optimisation
algorithm could not find realisations that replicated the structure of the reference model.
However, the dynamics of the reservoir response were accurately reproduced due to the
disruption of the channel’s integrity. This experiment demonstrated the importance of the
continuity of the hidden space, as transitioning to less dense regions limits the generative
capabilities of the neural network.
The third dataset represented a semi-synthetic benchmark Brugge field that comprises of
four stratigraphic zones. Since GWAE training requires a fairly large amount of data, the
initial benchmark was increased to 5000 geological representations. It is worth noting that
the resulting prior dataset (BRUGGE) maintains geological realism in terms of property
distribution and spatial characteristics. It does not statistically contradict the original well
data. In the first stage, using GWAE as a geological generator tested the hypothesis of
the influence of the geological modelling algorithm to uncertainty when constructing the
prior. To remind, the upper stratigraphic object, Schelde, represents a fluvial sedimentary
environment, which was modelled by two methods: Object Modelling and SIS. The anal-
ysis of the latent space for this prior dataset revealed a limitation as the latent space was
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split into two disconnected clusters related to the modelling approach, which is a negative
effect for the further optimisation process as the global discreteness of the search space
needs to be taken into account. When creating a generative model for the entire Brugge,
it was decided to train a set of GWAEs, each of which would be responsible for its strati-
graphic zone. While solving the inverse problem, the optimiser used the combined hidden
space. This approach proved to be effective, as it allowed the successful identification of
a set of matched models.
Graph generative networks have demonstrated potential for modelling the spatial distribu-
tion of geological properties, subject to various types of uncertainty. Still, the quality of
the generator’s performance is directly affected by the construction of the prior dataset.
As demonstrated in Chapters Graph Wasserstein Autoencoders and channelized syn-
thetic case and Graph Wasserstein Autoencoders and fault synthetic case, a geological
representations in latent space decompose into discrete clusters, which negatively affects
the optimisation process.
In summary, the novelty of this study can be summarised as follows:

• The simultaneous consideration of geological scenario uncertainty, structural uncer-
tainty and petrophysical dependencies through a universal low-dimensional hidden
space.

• The use of Graph Wasserstein Autoencoders to handle irregularities of geological
structure to maintain the topology and connectivity of 3D geological structures.

• The use of Geodesic metric for efficient navigation in the LS.
• The use of a three-component OF that includes control of geological realism and

balance the model soft match to static and dynamic data.
• The use of multidimensional hidden space analysis methods for more efficient work

with generative models.
• The use of ensemble generative models for effective parameterisation of geological

objects with structural uncertainty of fault position and blocks displacement.
• Solving inverse problems using hybrid hidden spaces that provide non-unique solu-

tions.
• The identification of important limitations in modelling of prior.
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8.2. RECOMMENDATIONS

8.2 Recommendations

Graph-based machine learning methods are a relatively young direction in data science, but
it is already clear that their potential is very high. This work can be considered a first step
towards the development of graph-based geological generators that facilitate geological
modelling under uncertainty. Recommendations would extend the applicability of the
proposed methods beyond the thesis. The logical continuation of this work could involve
research in the following directions:

• Development of approaches for constructing prior based on fuzzy transitions be-
tween geological environments.

• Development of universal parameterisation approaches in the presence of discrete
model parameters (fault positions, number of facies) for continuous representation
in the latent space (Giovanis et al., 2024).

• Integration of geodesic-inspired optimisation algorithms for solving the inverse prob-
lem and speeding up the calculation of the geodesic metric.

• Integration of graph-based flow simulators (Sanchez-Gonzalez et al., 2020) to elim-
inate the need for reverse transfer from the graph representation of the geological
model to the grid representation.

• Integration of flow diagnostics based on time-of-flight approach (Møyner et al.,
2014) or another fast fluid flow approximation techniques (Nakajima et al., 2021) to
speed-up simulations.

• Implementation of graph generation approaches to create graphs of different sizes,
including graph upscaling and downscaling (Loukas, 2018).

• The implementation of transfer learning approaches to expand the capabilities of the
graph generator and its corresponding hidden space by integrating new geological
scenarios (eg: number of channels, facies, azimuth and so on).
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