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Abstract
This thesis investigates using generative adversarial networks (GANs) to fast-build geolog-
ically plausible 3D facies models of fluvial systems by learning simulated facies patterns
and their uncertainty from a process-based model with different avulsion parameters. Flu-
vial systems, e.g. meandering rivers, can create complicated facies distributions composed
of multiple facies with varied shapes and transitions due to the complex sedimentary pro-
cesses and the partiality of the resulting record. Conventional simulation tools, such as
process-based models and geostatistical approaches, use a stochastic process to simulate
fluvial facies models based on physic-based or rule-based processes, parametric geome-
tries or spatial correlation models. The stochastic nature allows those conventional tools
to produce an ensemble of different realisations. However, those realisations often can’t
be directly sampled when integrated into a model updating loop, requiring external geo-
logical parametrisation, e.g. PCA. Deep generative models, e.g. GANs, showed powerful
learning capability that allows using a small number of latent parameters obeying a simple
distribution, e.g. Gaussian or Uniform distribution, to sample random realisations, which
can be regarded as a geological parameterisation itself. GANs have successfully repro-
duced realisations from object-based models. This triggers the interest in exploiting the
learning capacity for data complexity, capturing geological processes more closely. As
GANs can learn geological patterns from object-based models, how about process-based
models?

This thesis deeply exploited applying GANs to learn facies models from a process-based
simulator, FLUMY, which is a step forward in deep generative model applications from
the research to real-world challenges. This work tackled several identified problems in
GAN learning 2D and 3D meandering fluvial patterns by proposing a set of unique model
structures, learning frameworks and training strategies.

The ultimate product of this PhD project is a GAN-based 3D facies modelling tool for
low net-to-gross meandering fluvial systems called FluvialGAN3D simulator. This project
used a lowNTG ratiomeandering fluvial dataset as an example to develop the configuration
of GANs. Extending FluvialGAN3D to other sedimentary settings requires correspond-
ing training datasets and may need to tune GANs’ hyperparameters. The FluvialGAN3D
simulator consists of two pre-trained generators and a reconstruction program, achieved
by solving the problems below in the thesis:

1 creating a benchmark meandering fluvial dataset available for reproduction.

2 comparison of different GAN setups.

3 generating complexmulti-facies distributions that represent the features and the vari-
ability of the process-based simulations.

4 efficient GAN training on 2D patterns to reconstruct 3D facies models.

5 geological consistent 3D reconstruction of the deposited succession of arbitrary
thickness.

6 investigating different extensions, including soft conditioning to well and seismic
data.
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Chapter 1

Introduction

1.1 Background

Complex sedimentary systems, such as fluvial systems, introduce reservoir scale hetero-

geneity over hundreds of meters, impacting the flow response. The distributions of rock

physical properties, like porosity and permeability, control the reservoir dynamics, fluid

in place and flow [Corbett, 2012]. Fluvial reservoirs, particularly low net to gross fluvial

reservoirs, can have variably connected sand-bodies vertically and laterally, resulting in

variable flow paths, impacting the areal and vertical sweep [Corbett, 2012].

In practice, the modellers often use a facies model to honour the reservoir scale hetero-

geneity [Walter, 1984]. A facies model is a common tool to summarise the sedimentary

environment, where each facies refer to a specific body with consistent characteristics re-

flecting a certain sedimentary condition, process or environment [Miall and Miall, 2016,

Reading, 1978, Walker, 1976]. Fluvial systems, such as meandering systems, create mul-

tiple facies with different geometries and spatial distributions that result from geological

processes, like channel migration. Facies transition, change from one facies to another,

along the channel centreline, can add geological complexity in terms of geological bod-

ies, particularly in a low NTG and moderate aggradation rate environment, e.g., point bar

sand usually only accretes at the inner bank of the channel. Meandering systems feature

different channel fill and boundary facies, complicated facies transition, non-constant fa-

cies geometry, fluctuant channel sinuosity, and variable grain size distributions. These
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complex geometrical heterogeneities, e.g. curvilinear, are challenging to model with con-

ventional and even advanced statistical algorithms. Therefore, efficiently developing a

geologically plausible facies model with a high-level complexity conditioned to data is

often challenging.

1.1.1 Fluvial Systems

Fluvial systems result from various upstream and downstream controls, including auto-

genic constraints (e.g. overbank flooding, avulsion, channel migration, etc.) and allo-

genic constraints (e.g. tectonics, climate, sediment type, valley gradient, base level, etc.)

[Ethridge and Schumm, 2007, Schumm, 2007]. The joint effect of those elements yields

different morphology. One classification categories channels into four types: straight,

meandering, braided and anastomosing [Miall, 1977]. Different types of channels present

contrasting patterns in sinuosity, the number of channels, etc. (see Figure 1.1). Besides the

channel morphology in plane view, those autogenic and allogenic factors of fluvial systems

also significantly impact the sand bar distribution that dominates the reservoir heterogene-

ity. For example, the meandering river accretes sand bars (point bars) at the inner bank,

while the braided rivers form sand bars in the middle of the channel (braid bars) and are

generally wider and shallower than meandering rivers when they have a similar discharge

as the braided rivers are more bed-load dominated rivers [Ferguson, 1984]. Therefore,

the modellers need to involve necessary geology to reflect realism when modelling fluvial

systems.

Geological realism often refers to the specific geological knowledge considered for a sub-

surface investigation [Wellmann and Caumon, 2018]. Complex processes yield the spatial

distribution of properties over long time periods, making it hard to consider all aspects

of the processes when modelling the distribution. Thus, the modellers must decide how

much geological realism is needed for a geomodel. For facies modelling, modellers of-

ten consider the geometry, arrangement of deposited facies, facies proportion and facies

connectivity as the principal aspects of geological realism to be preserved [Wellmann and

Caumon, 2018]. When the sedimentary system is relatively simple, more likely to be ho-

mogenous or has a clear trend, the modellers might use a simple correlation model to

2



FIGURE 1.1: Different types of fluvial patterns. From Makaske [2001]

represent it. As for fluvial systems that are highly heterogenous, the modellers need to

consider more complicated tools to model them.

1.1.2 Facies Modelling Tools

Conventional facies modelling tools include process-based models and geostatistical ap-

proaches. In general, a broad classification categorises geostatistical approaches into two

types: pixel-based and object-based. The pixel-based method, for example, two-point

statistics (Sequential Indicator Simulation, SIS, TGS, PGS) orMulti-point Statistics (MPS),

creates realisations by assigning values pixel by pixel [Deutsch et al., 1992, Strebelle,

2000]. In contrast, the object-based model needs to define the object shape in advance

3



and place the object randomly on the modelled ground [Maharaja, 2008]. Alternatively,

physics-driven process-based models simulate realisations following the physics equation-

s/rules/simplified processes of the depositional process derived from natural geology ob-

servations or laboratory experiments [Bogaart et al., 2003, Grimaud et al., 2022, Lopez,

2003].

However, the approaches above either lose realism due to inaccurate estimation of facies’

spatial distribution or are slow or inflexible to data conditioning. SIS/TGS/PGS and MPS

are limited in how well they can reproduce geometries to the high level of multi-facies

complexity without losing realism as their spatial correlation models represent simplified

facies distributions, thoughMPS can capture more complex spatial correlation than SIS/T-

GS/PGS. The object-based model, e.g. TiGenerator [Maharaja, 2008], can only simulate

pre-defined shapes while ignoring the impact of sedimentary processes and the wide vari-

ation of the facies geometries in nature [Cojan et al., 2005, Zhang et al., 2019b]. The

process-based models can simulate multiple plausible depositional scenarios but are very

computationally costly and are difficult to condition to the data point and seismic [Bogaart

et al., 2003, Bubnova, 2018, Strebelle, 2021]. Process-based approach, therefore, suits to

elicit the uncertainties from the system parameters, which can then provide the geometric

priors for either object-based modelling or MPS if the number of facies reduced to a small

amount, e.g. three or four [Strebelle, 2021]

Recent publications demonstrated that deep generative models, e.g. Generative Adver-

sarial Networks (GANs) and Variational Auto-Encoder (VAE), could efficiently parame-

terise and reproduce sinuous channel geometries and associated linear facies transitions in

a shale background conditioned to multi-types observed data [Azevedo et al., 2020, Chan

and Elsheikh, 2019, Laloy et al., 2017, 2018, Song et al., 2021a,b, Zhang et al., 2019b].

ThoseVAE andGAN applications either usedObject-BasedModels orMPS as the training

dataset, yielding their deep generative models could only reproduce data at the same level

of complexity as their training dataset, e.g. geometries of parametric objects [Azevedo

et al., 2020, Laloy et al., 2017, 2018]. Most deep generative workflows do not hard condi-

tion their simulations to measured data such as wells facies log [Chan and Elsheikh, 2019,

Zhang et al., 2021, 2019b]. Simulating facies realisations that fit precisely observed data is

a feature of geostatistical modelling to build realisations of the inter-well uncertainty and,

4



therefore, should be an advanced feature of other reservoir facies modelling approaches.

Indeed, the observed data in the wells may not represent the upscaled grid cell property

when the grid dimensions are hundreds of meters. Thus, if a facies model should precisely

honour the observed data is controversial, but generally, data conditioning should be an

option in reservoir facies modelling tools in case of strong confidence in certain geogrids’

value.

1.2 Objectives

Encouraged by earlier successes in deep generative model applications to modelling chan-

nelised reservoirs, this PhD project further applies GANs to model more complex fluvial

systems than earlier GAN applications [Chan and Elsheikh, 2019, Laloy et al., 2018, Zhang

et al., 2019b]. Compared to the training dataset used in earlier applications [Chan and

Elsheikh, 2019, Laloy et al., 2018, Zhang et al., 2019b], this study adds more facies (e.g.

point bar and different channel fills) to the training dataset that introduces more compli-

cated facies transitions and a bigger variation of the facies’ geometry. To investigate how

many plausible geological features GANs can learn from a process-based model’s realisa-

tions produced by different avulsion settings, this thesis uses meandering fluvial systems

as an example to test and further develop GANs to produce more complex field-scale reali-

sations. To extend the GAN application to 3D simulation with a more generalised usage, a

further study researches potential ways to reuse pre-trained models, avoiding wasting time

preparing datasets and training GANs after moving to a field with similar sedimentary

environments but different field sizes.

1.2.1 General Objective

The main objective of this study is to investigate how to apply GAN to learn complex 3D

meandering facies models from process-based models.

1.2.2 Specific Objectives

To achieve this general objective, developing a series of new tools is necessary to fulfil the

following specific objectives:
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• Create a training dataset with a state-of-art process-based algorithm to represent

uncertainty across a range of plausible meandering depositional scenarios.

• Train a GAN-based simulator to reproduce plausible 2D realisations covering a wide

range of model diversity by selecting an appropriate GAN baseline via a comparison

study and further developing it to handle identified challenges associated with the

training dataset.

• Recreate the complex geology in 3D effectively with a handy control on the reservoir

thickness.

• Explore existing data conditioning techniques to blend conditioning data into GAN

generations.

1.3 Outlines

The rest of this thesis follows the organisation below:

• Chapter 2 reviews three popular classes of facies modelling tools, including process-

based approaches, geostatistical approaches andmachine learning-based approaches.

This chapter recaps the main mechanism for every simulation tool, shows typical

simulation examples from previous publications, and discusses the advantages and

disadvantages. Particularly, this chapter provides a detailed review of artificial in-

telligence components in popular deep generative models, explaining the terms and

algorithms used in later chapters.

• Chapter 3 presents the benchmark datasets created by a process-based model. A

process-based algorithm, FLUMY [Grimaud et al., 2022], simulates low net-to-

gross meandering models with different avulsion rates, composing a sterner training

dataset for GANs named GAN River-I. This dataset serves as the benchmark for the

studies in the rest chapters, which discuss investigations of GAN learning in 2D and

3D facies modelling cases. Several qualitative and quantitative analyses describe

GAN River-I and introduce tools for measuring geomodels, which are used for eval-

uating GAN performance in later chapters.
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• Chapter 4 introduces the research on developing Fluvial GAN, a GAN variant de-

signed for 2D meandering fluvial facies modelling. This chapter starts with com-

paring popular GAN variants in learning 2D 3-facies meandering patterns and then

applies the best GAN candidate to multi-facies modelling. This chapter identifies

two typical unrealistic features in GAN generations and further develops three im-

provements to help GAN better learn multi-facies meandering models.

• Chapter 5 describes the 3D extension of Fluvial GAN with a flexible output fa-

cies model thickness based on a conditional normalisation technique. This chapter

presents a novel 3D reconstruction process to simulate the facies model slice by slice

upward vertically, conditioning the upper layer to its lower layers weighted by a de-

caying mechanism. Two proposed training enhancements improve the geological

realism and diversity in reconstructed models. This chapter also discusses a poten-

tial way of varying the 3D meandering fluvial patterns with an external parameter,

making the resulting difference more explainable.

• Chapter 6 investigates how to bridge the gaps between research staged Fluvial GAN

to real field applications, including latent (parameterised) size and data conditioning.

This chapter discusses the impact of latent size on Fluvial GAN’s performance by

reducing its original latent size (default value in Fluvial GAN) to a small value that

is manageable in many heuristic-based global optimisers. Another study explores

several data conditioning techniques for enforcing GANs’ generation to honour ob-

served data, showing successes and challenges.

• Chapter 7 remarks on the conclusions of this PhD project and suggests future direc-

tions in developing GAN-based facies simulation. This chapter briefly summarises

the main findings and identified challenges during the PhD study. Depending on the

purpose of creating facies models, GAN-based facies simulation potentially have

diverse routes of improvement, which are discussed at the end of this thesis.
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Chapter 2

Facies Modelling Approaches for
Meandering Systems

Geostatistical simulations, e.g.[Remy et al., 2009] and process-based models, e.g.[Lopez,

2003] are two classical tools for modelling fluvial systems, and machine learning-based al-

gorithms (deep generative models) proved their capability of learning complex geological

patterns in recent years [Chan and Elsheikh, 2019, Laloy et al., 2018, Zhang et al., 2019b].

Due to geological pattern complexity, fluvial systems, such asmeandering systems, present

substantial heterogeneity that needs a proper facies model to represent. Because the num-

ber, proportion, spatial distribution and type of reservoir facies present typically control

the distribution of porosity, permeability, and flow behaviour. Depending on the pur-

pose, modellers choose different tools to model the facies distribution, e.g., process-based

model, object-based model, multi-point statistics, etc.

This chapter will briefly overview a wide range of algorithms used to model fluvial facies

to date, including their algorithms, advantages and disadvantages. This chapter will also

review the particular sedimentary facies features that are essential to reproduce by geo-

statistical or generative learning model. This thesis will focus on reproducing these key

spatial features with the proposed Fluvial GAN in the following chapters.
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2.1 Process-based Model

Process-based approaches represent geological sedimentation processes with mathemati-

cal models derived from observations of nature and laboratory experiments [Lopez, 2003].

The river meanders in fluvial systems result from channel evolution with erodible banks,

which raises challenges in modelling facies distribution due to the complex river evolution

mechanism. A set of empirical or theoretical formulas that describe sedimentary processes

of forming meandering systems composes the numerical simulation of the meandering

of the river. Depending on the model complexity, process-based models for meandering

rivers may incorporate various processes relevant to climate, hydrology, soil erosion, chan-

nel geometry and sediment transport [Bogaart et al., 2003]. Meanwhile, channel migration

and sediment deposition are essential for producing 3D fluvial facies models.

FIGURE 2.1: An example of facies model from 𝐹𝐿𝑈𝑀𝑌𝑇𝑀 [Grimaud et al., 2022], a
process-based model.

Process-based approaches can create useful conceptual geological models but are usually

computationally costly and challenging to condition to data. Process-based models sim-

ulate sedimentary processes to create associated facies at each time step, reflecting the

realism of considered physics and processes. Therefore, the time cost of building a se-

quence depends on the calculation speed at each time step and the sedimentation rate that

determines how many steps it takes to build up a sequence with the pre-defined thickness.

Simulated sequence results from the deposited sedimentary facies during the simulation
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period, while observations from well and seismic are spatial, not temporal. This discrep-

ancy makes data conditioning, especially for both point conditioning to well and soft con-

ditioning to seismic, challenging as the models need to consider the process realism at the

current time step and observed data at the location simultaneously, which sacrifices both

geological realism and conditioning accuracy [Bubnova, 2018].

2.1.1 Channel Migration and Bend Theory

Channel migration prediction relies on hydrodynamics and sediment transport hypotheses,

the St. Venant equations [de Saint-Venant et al., 1871]. Ikeda et al. [1981] invented the

bend theory that linearly approximates the lateral bend amplitude increase based on near

bank velocity perturbation (see Figure 2.2). Later improvements in bend theorymake com-

puter simulations successfully infer the long-term behaviour of meandering rivers based

on channel centerlines [Johannesson and Parker, 1989, Lopez, 2003, Parker et al., 2011,

Sun et al., 2001].

FIGURE 2.2: A schematic diagram of bend theory. From Bubnova [2018], Parker et al.
[2011].

In bend theory, Ikeda et al. [1981] transformed the channel centerline to Cartesian coordi-

nates and calculated velocity perturbation at each point, which yielded the lateral migra-

tion of river meanders. Ikeda et al. [1981] estimated near bank velocity perturbation using
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equation 2.1.
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′
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+ 𝐶 𝑓 𝜑

′ ( 𝑈
4

𝑔𝐻2 + 𝐴
𝑈2

𝐻
)] (2.1)

where 𝑢′𝑏 is near bank velocity perturbation, 𝑠 is coordinates along the channel centerline,

𝑈 is reach-averaged tangential velocity, 𝐻 is reach-averaged depth, 𝐶 𝑓 is fraction factor,

𝜑
′ is centerline curvature perturbation, 𝑏 is normal half-width, 𝑔 is acceleration of gravity,

and 𝐴 is an𝑂 (1) factor. The lateral migration rate is a product of velocity perturbation and

bank erosion coefficient. By linearising, the bend theory estimates the channel migration

at the next time step based on the current channel pattern and flow velocity.

2.1.2 Aggradation

Aggradation refers to sediment deposition during periods of high discharge due to the

lower velocities, which raises the base level and shows a big spatial difference across the

field [Nicholas and Walling, 1996]. A sediment supply greater than the transport capacity

triggers aggradation, which drops large particles first and then fine deposits. During floods,

suspended load covers the lowland area known as the floodplain and deposits more rapidly

nearby channels forming an elevation called natural levee (see Figure 2.3), higher than

distal floodplain [Saucier, 1994]. The aggradation rate decreases from channels to farther

floodplains and differs between flood events [Ferring, 1986, Nicholas and Walling, 1996].

FIGURE 2.3: A cross-section of a meander belt. From Saucier [1994].
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2.1.3 Levee breach, Avulsion and Meander Cutoff

Levee breach leads to water and sediment in the floodplain, triggering crevasse splay de-

position and may cause some forms of channel avulsion [Nienhuis et al., 2018]. Figure

2.4 shows two possible results of natural levee breaches in the Mississippi River. Once a

levee breach occurs, suspended sediment flows outside the channel and levee. Sediment

forms fan-shaped crevasse splay deposition if the breach healed. Otherwise, the breach

may induce a channel avulsion.

FIGURE 2.4: LIDAR image of crevasse splay and avulsion caused by natural levee breaches.
From Nienhuis et al. [2018].

Avulsion is the process during which a meandering river abandons its old channel for a

new one [Heller and Paola, 1996]. Slingerland and Smith [2004] summarised three styles

of avulsions, including annexational avulsion, incisional avulsion and progradational avul-

sion, and categorised avulsions as full versus partial, nodal versus random and local versus

regional according to the behaviours of the diverted flow (see Figure 2.5). The whole flow
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changes the channel leading to full avulsion, while a portion of the flow runs into the new

channel known as partial avulsion [Slingerland and Smith, 2004]. Depending on the avul-

sion site, nodal avulsions abandon channels around the fixed area, but random avulsions

may abandon channels anywhere along the active channel [Slingerland and Smith, 2004].

The main difference between local and regional avulsions is whether the new channel re-

joins the original channel downstream [Heller and Paola, 1996].

FIGURE 2.5: Illustration of different categories of avulsion. From Slingerland and Smith
[2004].

Meander cutoff is another type of channel abandonment that forms a new channel by con-

necting two sides of a meander loop and abandoning the old channel, impacting point-bar

geometries and heterogeneity [Russell, 2017]. Neck cutoff and chute cutoff are two com-

mon meander cutoffs. When a meander overdevelops, the upstream and downstream limbs

move close and converge to form a typically high diversion angle neck cutoff benefiting
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more mud-prone channel-fill deposits [Russell, 2017]. In contrast, chute cutoff builds on

the point bar or old abandoned channels, which often results in a low diversion angle and

keeps channels active for a longer time favouring sand-prone channel-fill deposits [Rus-

sell, 2017]. Russell [2017] summarised the meander cutoffs based on their abandonment

mechanism and post-cutoff meander patterns (see Figure 2.6).

2.2 Geostatistical Approach

Geostatistical methods simulate stochastic realisations estimating the reservoir property

away from well locations under some spatial correction assumptions. By using some con-

ceptual model to describe the spatial correlation of the facies, pixel-based geostatistical

approaches simulate stochastic realisations of the facies’ spatial distribution sequentially

through the modelled domain, i.e., two-point statistics (Sequential Indicator Simulation,

SIS, TGS, PGS) or Multi-point Statistics (MPS) [Deutsch et al., 1992, Remy et al., 2009,

Strebelle, 2000]. Another popular geostatistical approach is the object-basedmodel, which

creates realisations via dropping pre-defined objects into the simulated domain and ad-

justing them to conditioning data [Maharaja, 2008, Remy et al., 2009]. This section only

reviews the classical version of the three geostatistical methods instead of diving deeper

into more advanced versions.

2.2.1 Two-point Statistics

Two-point statistical methods are based on a variogram model that describes the spatial

correlation under the secondary stationary assumption [Deutsch et al., 1992]. A traditional

measure of the variogram, rigorously known as semivariogram, calculates half of the mean

squared difference between the values separated by a lag distance, given by Equation 2.2

[Deutsch et al., 1992]

𝛾(ℎ) = 1
2𝑁 (ℎ)

𝑁 (ℎ)∑
𝑖=1
(𝑥𝑖 − 𝑦𝑖)2 (2.2)

where ℎ is the lag distance, 𝑁 is the number of point pairs, 𝑖 denotes the index of pairs,

𝑥 and 𝑦 are the start and end points, respectively. After computing the variogram along a

direction, a user-defined analytical, functional model, e.g. the spherical, exponential, and

Gaussian model, is fitted to the calculated variogram for producing the variogram model.
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FIGURE 2.6: Different types of meander cutoffs. From Russell [2017].
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The variogram model determines the spatial continuity of the properties along a chosen

direction in the field. Then, a stochastic sequential simulation populates a value for every

cell based on the variogram models using a linear interpolation estimator, kriging (see

Figure 2.7).

FIGURE 2.7: An example of a realisation from sequential indicator simulation (SIS), a pop-
ular two-point statistics method used for producing facies models. Modified after Remy

et al. [2009].

Regarding facies modelling, variogram-based approaches need to use probability values to

code the facies variables in the indicator format [Pyrcz and Deutsch, 2014]. This conver-

sion simplifies the data integrationwhen the program processes categorical data, e.g. facies

variable. Common variogram-basedmethods for facies modelling include Sequential Indi-

cator Simulation (SIS), Truncated Gaussian Simulation (TGS), Puri-Gaussian Simulation

(PGS).

Sequential indicator simulation (SIS) visits every cell in a random path, where it draws a

value from the probabilities estimated by a kriging estimator, a linear interpretation based

on the variogram model [Pyrcz and Deutsch, 2014, Remy et al., 2009]. SIS calculates the

variogram using both well data and simulated cells in the previous step. As the indicator

method calculates the probability of converting from one facies to the other while not

including the order relationships, SIS may assign a facies at any place and lack the facies

sequence control of condition its realisation to the depositional facies boundary, resulting

in noisy realisation (see Figure 2.8 a) [Pyrcz and Deutsch, 2014, Yarus et al., 2012].
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FIGURE 2.8: Comparison of realisations from SIS and TGS. Modified after Yarus et al.
[2012].

Truncated Gaussian simulation (TGS), on the other hand, is another variogram-based ap-

proach for facies modelling that is a parametric algorithm based on the Gaussian distri-

bution of facies attribute and enables incorporating facies order information. TGS sets

threshold values as the boundary between facies at a Gaussian distribution to convert a

realisation from a continuous Gaussian variable to categorical facies [Pyrcz and Deutsch,

2014, Remy et al., 2009]. This algorithm works as a post-processing of variogram-based

Gaussian simulation, which allows the user to arrange the facies in order and vary the

threshold locally. Compared to SIS, TGS performs better in dealing with ordinary cate-

gorical facies (see Figure 2.8 a and b), whose realisations have a clearer boundary between

facies.

Puri-Gaussian simulation (PGS) is a more advanced version of truncated Gaussian sim-

ulation, which extends TGS to multi-Gaussian fields to represent a more comprehensive

facies transition. PGS also needs to set the conversion rules between the continuous Gaus-

sian field and categorical facies, but it can use more than one variogram to describe the

spatial correlations between different facies [Mariethoz et al., 2009, Pyrcz and Deutsch,

2014, Yarus et al., 2012]. Figure 2.9 shows an example of PGS realisation.

Variogram-based methods, in general, can reproduce spatial continuity and the fraction of
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FIGURE 2.9: An example of realisations from PGS. Modified after Mariethoz et al. [2009].

facies and are suitable for conditioning diverse types of data as they generate realizations

one pixel at a time. However, the variogram represents relatively simple spatial correla-

tions. Therefore, two-point statistics have difficulty reproducing geometries with complex

connectivity patterns, such as meandering channels, which may cause the simulated real-

izations to fail to capture the real connectivity.

2.2.2 Object-based Model

Object-based methods simulate facies distribution by dropping the pre-defined geobodies,

such as channels, levees and lobes, one by one onto simulation grids [Deutsch and Wang,

1996]. Object-based methods can create plausible geological geometry of facies based on

the prior geological description (see Figure 2.10).

However, a couple of drawbacks limit its application. One weakness of object-based meth-

ods is that they are difficult to data conditioning to the combination of point and soft

conditioning probability map data. Although the modellers can condition realisations

from object-based methods to well data using Markov Chain Monte Carlo algorithms,

the convergence is slow and may fail to converge [Hauge et al., 2007]. Another issue is

that the modellers must develop a different algorithm for each new object type [Strebelle

et al., 2003], which is limited to objects whose shapes can be parameterized [Zhang et al.,

2019b]. Also, objects are merely simplifications of the real geo-bodies, the exact same
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FIGURE 2.10: An example of a facies model from TiGenerator, an Object-based model.
Modified after Maharaja [2008].

thing with process-based approaches like FLUMY. The variety and combinations of geo-

bodies’ shapes in nature are far more than an algorithm can represent in detail, even with

a certain amount of stochasticity.

2.2.3 Multi-point Statistics

Multi-point statistics (MPS) is a class of geostatistical approaches that sequentially simu-

late realisations by drawing values based on the conditional probabilities calculated from

a training image (TI) [Pyrcz and Deutsch, 2014]. Though their ways of deriving, stor-

ing, and restituting patterns are different, MPS algorithms generally contain basic steps,

including getting patterns from the TI, defining a simulation path and the node to be sim-

ulated, finding the node’s neighbourhoods, calculating the conditional distribution of the

variable at current node conditioned to its neighbourhoods, and sampling a value from this

conditional distribution [Mariethoz and Caers, 2014].

MPS algorithms have different implementations to learn from the TI to restitute simula-

tions. Guardiano and Srivastava [1993] first came up with the concept of MPS simulation,

which learned the spatial correlations from training image (TI) instead of the variogram

model. This MPS algorithm is computationally costly because it needs to scan the whole

TI for every new simulated node [Guardiano and Srivastava, 1993, Mariethoz and Caers,

2014, Pyrcz and Deutsch, 2014]. The first practical implementation of MPS is the single

normal equation simulation (SNESIM) by Strebelle [2000], who improved the original
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MPS by using search trees to store pre-computed conditional proportions before simula-

tion. SNESIM defines a template that is commonly an ellipsoidal shape with orientation

and a number of points around a central node to calculate the conditional probability of

the variable value at the central node. The location and value of those nodes within a tem-

plate compose a data event, which is what SNESIM and many other MPS algorithms learn

from the TI. SNESIM stores the learned information in a search tree where it retrieves the

conditional probabilities to simulate realisations [Mariethoz and Caers, 2014, Pyrcz and

Deutsch, 2014, Strebelle, 2000]. From this learning perspective, MPS algorithms learn a

model from data and store knowledge in a tree, list or other forms of a dictionary, which

is consistent with the machine learning-based approach.

Compared to variogram-based methods, MPS can capture multi-point-based structural in-

formation and therefore simulate more complex geological patterns, for example, channels

(see Figure 2.11). As MPS also simulate realisation pixel by pixel or patch by patch, it can

blend multiple conditioning data into its simulation [Liu et al., 2005].

FIGURE 2.11: An example of a facies model from SNESIM, an MPS approach. Modified
after Remy et al. [2009].

However, MPS algorithms often fail to reproduce realistic non-linear patterns, especially

for non-stationary simulations conditioned to well data [Zhang et al., 2019b]; see Figure

2.12. Chan and Elsheikh [2019] also mentioned that MPS doesn’t provide a convenient

parameterisation of its simulated realisations, which is an issue of many geostatistical ap-

proaches but essential for many existing pipelines, for example, optimisation approaches

in the history matching loop.
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FIGURE 2.12: An example of conditional facies models from MPS. Modified after Zhang
et al. [2019b].

2.3 Machine Learning-based Geological Modelling Ap-

proach

The machine learning approach optimises a model by learning from data to fit specific

tasks, like image synthesis, that is later extended to solve facies modelling challenges.

Deep generative models successfully reproduce fluvial channel geometry and constant fa-

cies transition along channels [Laloy et al., 2017, 2018]. Likemostmachine learning-based

approaches, the best result of a deep generative model is producing the same quality data

as their training data. Therefore, one can not expect deep generative models to create a

sedimentary system with complex facies transitions when only training them with regu-

lar objects. A machine learning-based model is only as good as the data used for training

and testing. Earlier publications also attempt to condition GANs to well data, net-to-gross,

and probability maps, blending observed data and conceptual geology [Chan and Elsheikh,

2019, Song et al., 2021b, Zhang et al., 2019b]. Though previous studies prove that deep

generative models provide a good chance for creating complex facies models, applying

them to real fields still needs further efforts to tackle their training, evaluation and condi-

tioning flexibility challenges. This section reviews the success and drawbacks of recent

deep generative model applications in the literature.

This section introduces the workflow of deep generative models and their widespread ap-

plications to facies modelling, including Variational Auto-Encoder (VAE) and Generative

Adversarial Networks (GAN). Deep generative models use similar workflows for training
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and generation. Thus, the first subsection introduces general components of deep gen-

erative models’ workflow. The second subsection reviews VAE and its applications to

reservoir modelling. This subsection presents the Encoder-Decoder model and the Auto-

Encoder first, though most are not generative models because they have no distributional

assumptions on data generation and purely project data to lower dimensional space. Intro-

ducing them here is because they share the same model structure as VAE and have some

successful applications to reservoir modelling in earlier years [Canchumuni et al., 2017,

Liu et al., 2019]. The last subsection broadly discusses GAN, its training difficulties, vari-

ants and applications to facies modelling in recent years.

2.3.1 Deep Generative Models Workflow

The training workflow of deep generative models commonly comprises three main compo-

nents: data pre-processing, model structure and optimisation. This subsection introduces

each element in general and reviews its typical compositions, respectively.

2.3.1.1 Data Pre-processing

Data pre-processing refers to techniques enhancing raw data quality for machine learn-

ing and data mining, including data cleaning, reduction, scaling, and transformation [Fan

et al., 2021]. Data cleaning methods handle missing or noisy data by dropping, filling, or

smoothing them. Data reduction refers to decreasing the data dimensions by selecting or

extracting features. Data scaling and transformation modulate raw data to change the data

range, distribution and type. Particularly for generative tasks, data scaling and transforma-

tion are essential steps before feeding raw data into the models. Data scaling can make the

generative models easier to optimise, and data transformation can guarantee the data type

is executable to generative models, e.g. GAN cannot directly process categorical data.

As for facies modelling, the modellers usually need to convert the facies to numerical

data by data scaling and transformation methods. Facies represent certain rock types with

contrasting properties, while most deep generative models require digital inputs. Several

data transformation algorithms can efficiently convert data from category to numeric. Two

common ways are integer encoding and one-hot encoding; each has an appetite for a par-

ticular type of categorical data and shortcomings in its conversion mechanism.
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Integer encoding explicitly assigns an integer to each category (facies), and the value as-

signments usually obey a particular ordered relationship, also known as Ordinal encoding.

For example, an integer encoder assigns 1, 2, 3 to represent size labels 𝑠𝑚𝑎𝑙𝑙,𝑚𝑒𝑑𝑖𝑢𝑚, and

𝑙𝑎𝑟𝑔𝑒. This method is straightforward and keeps the data volume unchanged. However,

integer encoding could provide inaccurate relationships when categories don’t appear in

a single order [Hancock and Khoshgoftaar, 2020], which is the case for most facies asso-

ciations. Many facies within the same model can be ordered in multiple ways based on

different rock properties. Facies often have non-linear relationships with their rock prop-

erties, such as grain size, porosity, permeability etc. For example, facies with big grain

sizes can have high and low permeability depending on cementing. Thus, ordering facies

in one direction based on one property or linearly correlated properties is inappropriate

when they don’t have an apparent order due to the complex relationships between rock

properties.

Another popular data transformation method for categorical data is one-hot encoding that

replaces each category, e.g. facies variable, with a new binary vector [Niculescu-Mizil

et al., 2009], the same as the indicator variable used in geostatistics (e.g. SIS). The new

binary value, therefore, indicates whether a particular category is present at the current

location. For instance, while processing a model composed of two colours, blue and red, a

one-hot encoder produces a binary vector that represents blue and red as a vector of length

two because there are two different colour types. The binary vector [1,0] means blue, while

[0,1] denotes red. Because the one-hot encoder encodes each feature as a binary vector

whose length equals the number of categories, it may cause the data volume to inflate and

make training challenging if you have many categories. Indeed, too many facies is not

only an issue for machine learning-based methods but also for all facies modelling tools,

e.g. geostatistics [Strebelle, 2021].

Then, the modellers may need data scaling techniques to map data to a specific range

(commonly a small range) and/or change the distribution shape as the next step of data

transformation in the pipeline. The data scaling is often necessary when data have a vary-

ing or large range because a bigger value tends to give the attribute more ‘weight’ during

a gradient-based optimisation, impacting the learning efficiency [Han et al., 2022]. Two
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popular data scaling methods in earlier publications are min-max normalisation and stan-

dardisation. Min-max normalisation, also known as rescaling, refers to linearly mapping

data from its original range to a new range, which preserves the actual relationship between

data values but may produce out-boundary results when new data locates outside the orig-

inal scope [Han et al., 2022]. Standardisation, also called z-score normalisation, centres

data by calculating the difference between data value and mean value and then is divided

by the standard deviation. Though it reduces the effect of ‘outliers’ [Han et al., 2022],

standardisation changes the original data distribution to Gaussian distribution, which may

be incorrect; for example, the channelised pattern of fluvial systems is non-Gaussian.

2.3.1.2 Model Structure

A Deep generative model generally contains one or more neural networks-based mod-

els that consist of various layers, including fully connected layers, pooling layers, con-

volutional layers, normalisation layers, activation functions, and so on. This subsection

overviews those elements composing neural networks in deep generative models.

A fully connected layer, also known as the dense layer, describes a vector whose elements,

called ‘neurons’, are all connected to every neuron in the following vector [Ramsundar and

Zadeh, 2018]. Figure 2.13 illustrates a fully connected layer that calculates its outputs by

multiplying a 2D weight matrix and adding a bias vector (see equation 2.3).

𝑦 = 𝑊𝑥 + 𝑏 (2.3)

where 𝑦 is the output vector, 𝑥 is the input vector, 𝑊 is the weight matrix whose size

equals the output size times the input size, and 𝑏 is the bias vector. Elements in both

𝑊 and 𝑏 are learnable parameters that a training process can update their values. Fully

connected layers exploit all information provided to predict values in the output vector

but often raise learning issues, such as overfitting, due to their heavy, in terms of a large

amount of, learnable parameters.

Overfitting is a common issue in neural networks, which refers to a model performing per-

fectly on training data but badly on test data. To prevent overfitting, people often apply
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FIGURE 2.13: A schematic diagram of a fully connected layer. FromRamsundar and Zadeh
[2018].

strategies, for example, early stopping, dropout, regularisation, etc., when they train neu-

ral networks [Ramsundar and Zadeh, 2018]. Early stopping means ceasing the training

process before the model overfits. In practice, the modellers often save intermediate re-

sults during training and select a good model with the help of a validation set. Dropout

is a process that randomly freezes some neurons and only updates the rest at each train-

ing iteration, preventing neurons from overly co-adapting [Srivastava et al., 2014]. The

regularisation penalises the model based on its parameters’ variance, resulting in a sim-

pler model with a reduced variance while not increasing the bias too much [Goodfellow

et al., 2016]. However, deep learning research showed larger models could perform better

with increased model complexity, making the ‘bias-variance trade-off’ debatable [Nakki-

ran et al., 2021]. Nakkiran et al. [2021] presented that many deep learning models’ per-

formance first gets worse but then gets better with the increase of model size, called the

double-descent phenomenon (See Figure 2.15).

Normalisation layers standardise the input to accelerate and stabilise the training process

by reducing the internal covariate shift, which refers to the change in the input distribution

to a learning system [Ioffe and Szegedy, 2015]. Gradients vanishment and explosion are

two common problems of using gradient-based optimisers to train deep learning models.

During training, gradient explosion happens if the gradients of weights keep gaining along

a direction, making the training process unstable. The gradient vanishment, on the other

hand, happens when the gradients of weights keep descending and approach zero, resulting
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FIGURE 2.14: An example of the double-descent phenomenon. ResNet18 performs first
worse and then better on the test set with the increased size of the width parameter. From

Nakkiran et al. [2021].

in non-convergent behaviour.

Popular normalisation layers include batch normalisation, layer normalisation and instance

normalisation [Ba et al., 2016, Ioffe and Szegedy, 2015, Ulyanov et al., 2016]. They apply

the same feature normalisation but compute based on different pixel sets (see Figure 2.15)

using Equation 2.4 [Wu and He, 2018]

𝑥𝑖 =
1
𝜎𝑖
(𝑥𝑖 − 𝜇𝑖) (2.4)

where 𝑥𝑖 is the normalised value of input pixel 𝑥 indexed 𝑖, 𝜇𝑖 is the mean of the pixel set,

and 𝜎𝑖 is the standard deviation of the pixel set. The calculations of 𝜇𝑖 and 𝜎𝑖 are given by

Equation 2.5 and 2.6 [Wu and He, 2018]

𝜇𝑖 =
1
𝑚

∑
𝑘∈𝑆𝑖

𝑥𝑘 (2.5)

𝜎𝑖 =

√
1
𝑚

∑
𝑘∈𝑆𝑖
(𝑥𝑘 − 𝜇𝑖)2 + 𝜖 (2.6)

where 𝑆𝑖 is the pixel set, 𝑚 is the size of the pixel set, 𝑘 is the index of pixels in 𝑆𝑖, and 𝜖

is a small constant.
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FIGURE 2.15: A schematic diagram of popular normalisation layers that process 4D feature
tensors visualized in 3D. The blue pixels are the set of pixels used in calculating 𝜇𝑖 and
𝜎𝑖 in Equation 2.4. 𝐶 denotes the channel dimension in the feature tensor. Please note
the term ‘channel’ here is a dimension in tensor instead of the fluvial channel in geology.
𝑁 denotes the batch dimension in the feature tensor. 𝐻,𝑊 are spatial axes representing

height and width dimensions. From Wu and He [2018].

Activation functions transfer neurons’ outputs to another value domain linearly or non-

linearly to decide if a neuron is activated. Linear activation (see Figure 2.16 a) operates a

linear transformation on its input using Equation 2.7,

𝑓 (𝑥) = 𝑎𝑥 + 𝑏 (2.7)

where 𝑥 is the input value, 𝑎 and 𝑏 are constant coefficients. Non-linear activation in-

troduces non-linearity into neural networks, and using non-linear activations means that

neural networks can capture non-linear patterns. Selecting activations depends on the task

and layer position. The last activation function of the model needs to map its inputs to the

model output range determined by the tasks, for example, numerical values for the image

synthesis or categories for the image classification. This section lists five popular nonlinear

activations in deep generative models: Sigmoid, Tanh, ReLU, Leaky ReLU and Softmax.

Little [1974] introduced the Sigmoid, also known as the logistic function, by analogy with

spin systems, converting the input into a range between 0 and 1 based on the given Equation

2.8 [Han and Moraga, 1995]

𝑓 (𝑥) = 1
1 + 𝑒−𝑥 (2.8)

where 𝑥 is the input value and 𝑒 is the Euler number. The sigmoid function is differen-

tiable, bounded and non-linear, making it a good choice of activation in neural networks to

discover complex patterns, especially for the binary classification task. However, the two
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ends of the sigmoid activation tend to flatten, called sigmoid saturate, meaning a limited

response to its input value variation resulting in vanishing gradients (see Figure 2.16 b).

Another undesirable feature of the sigmoid function is its non-zero-centred nature, making

the optimisations driven by gradient-based algorithms move along a single direction and

slowing down convergence speed [Datta, 2020].

Hyperbolic tangent function denoted as Tanh is a popular non-linear and zero-centred acti-

vation, having a better training performance than the sigmoid function [Datta, 2020]. The

Tanh converts its input into a range between -1 and 1 by the given Equation 2.9,

𝑓 (𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 (2.9)

where 𝑥 is the input value and 𝑒 is the natural constant. Although Tanh eases the pain of

the non-zero-centred problem in model optimisation, it still suffers the saturated ends (see

Figure 2.16 c), which means the model optimisation has the risk of vanishing gradients.

Rectified Linear Unit, denoted as ReLU, takes only the positive part of its input by the

given Equation 2.10 [Jarrett et al., 2009, Nair and Hinton, 2010]

𝑓 (𝑥) =

𝑥, 𝑥 > 0

0, 𝑥 ≤ 0
(2.10)

where 𝑥 is the input value. ReLU partly resolves the saturation problem at the positive end

(see Figure 2.16 d) and is computationally faster than sigmoid and Tanh due to its simple

calculation [Datta, 2020]. ReLU pushes its input to zero at the negative side, and therefore,

the gradients become zero all the time, causing the units never to get activated, called the

dying ReLU problem [Maas et al., 2013].

Maas et al. [2013] came up with a variant of ReLU, called leaky ReLU, to tackle the dying

ReLU problem by giving ReLU a small slop at the negative part using the Equation 2.11

𝑓 (𝑥) =

𝑥, 𝑥 > 0

𝛼𝑥, 𝑥 ≤ 0
(2.11)
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where 𝑥 is the input value and 𝛼 is a small constant gradient. He et al. [2015] further

developed a variant of leaky ReLU, called parametric ReLU, by changing 𝛼 from a small

constant value to a learnable parameter. Leaky ReLU, as well as parametric ReLU, is a

zero-centred but non-bounded function (see Figure 2.16 e), making it undesired to be the

last activation function for many cases that require an output range. For example, many

classification tasks need the model to predict a value between 0 and 1.

FIGURE 2.16: Examples of popular activation functions. (a) Linear. (b) Sigmoid. (c) Tanh.
(d) ReLU. (e) Leaky ReLU

Softmax is a popular activation function mainly used for multi-class classification tasks,

whose output is the relative probability of each class. Softmax projects its inputs to values

ranging from 0 to 1 and assures the sum of all class probabilities at a certain location equals

1 using Equation 2.12 [Bridle, 1990]

𝑓 (𝑥𝑖) =
𝑒𝑥𝑖∑𝑁
𝑗=1 𝑒

𝑥 𝑗
(2.12)

where 𝑥 is an input vector containingmultiple elements, 𝑖 and 𝑗 are the index of the element

in 𝑥, 𝑁 is the total number of elements in the vector 𝑥, and 𝑒 is the natural constant.

The pooling layer is a downsampling technique that subsamples inputs to scale down the

spatial size, which decreases computational cost by reducing learnable parameters, al-

lows convolutional neural networks to capture hierarchical patterns, and improves local

translation invariance to prevent overfitting [Gholamalinezhad and Khosravi, 2020]. Lo-

cal translation invariance states that most pooled output values remain unchanged when

slightly translating the input, which is useful if the modellers are more concerned with the

presence of a feature than its location [Goodfellow et al., 2016]. Two classical pooling op-

erators are average pooling and max pooling, which divide their input into smaller regions
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to produce a lower representation. The difference is that average pooling calculates the av-

erage/mean values while the max pooling operator uses the maximum values to represent

the regions.

In contrast, an inverse operation of pooling is upsampling that maps its input into a larger

size, which many deep generative models require, e,g, GANs and VAEs. An upsampling

operator expands data by evenly inserting units between original data points. Depending

on the upsampling algorithm, a new unit can have the same value as its nearest neighbour

or infer its value by an interpolation function, such as linear interpolation. Most classical

upsampling layers, as well as pooling layers, have no learnable parameters and, therefore,

add limited computational cost to the models.

A convolutional layer scans data using a set of learnable matrices with smaller spatial

sizes, called kernels, to highlight if the patterns in the kernels exist (see Figure 2.17 a). A

kernel needs to scan input data in different channels, compositing a block of matrix called

a filter whose number equals the convolutional layers’ output size in channel dimension. In

practice, the convolution operator unrolls its input and output into vectors and uses a sparse

matrix to represent the kernels, making the forward and backward calculations easier (see

Figure 2.20). Convolutional layers have fewer learnable parameters than fully connected

layers because the kernels’ size is usually much smaller than the input data size, which

benefits model training. The convolutional layer also exhibits some degree of local and

deformation invariance because of its three features: the local receptive field, the shared

weights and the sub-sampling nature, especially when paired with pooling layers [LeCun

et al., 1998].

A convolutional layer links each neuron to smaller regions of its input called local receptive

fields (see Figure 2.18). The first convolutional layer’s receptive field equals its kernel size

if it directly processes the input data. The kernels highlight patterns’ existence, allowing

the neurons to extract local features, such as edges. By stacking convolutional layers,

kernels can compose high-order features, and the neurons in a deeper convolutional layer

have a larger receptive field, which makes the subsequent convolutional layers can identify

more complex patterns, for example, meandering channels. When a model has a single

path from input to output, a deeper layer’s receptive field is a function of its kernel size

and all shallower layers’ kernel sizes and strides (see Equation 2.13 from [Araujo et al.,
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FIGURE 2.17: A schematic diagram of different convolutions. (a) A convolution operator.
(b) A dilated convolution operator. (c) A transposed convolution operator. Modified after

Dumoulin and Visin [2016].

2019]).

𝑟0 =
𝐿∑
𝑙=1
((𝑘 𝑙 − 1)

𝑙−1∏
𝑖=1

𝑠𝑖) + 1 (2.13)

where 𝑟0 is the receptive field, 𝑙 denotes a layer, 𝐿 is the total number of layers, 𝑘 𝑙 denotes

the kernel sizes of layer 𝑙, 𝑠𝑖 denotes shallower layers’ strides, which means the distance

that kernels move along a direction. According to Araujo et al. [2019], the modellers can

regard pooling layers as having a kernel whose size equals the number of input units used

to produce an output unit. Activation and normalisation layers are commonly not involved

in receptive field calculation or change the receptive field of the whole network [Araujo

et al., 2019]. Alternatively, the modellers can calculate the receptive field layer-by-layer

using Equation 2.14 from [Araujo et al., 2019].

𝑟𝑙−1 = 𝑠𝑙 · 𝑟𝑙 + (𝑘 𝑙 − 𝑠𝑙) (2.14)

where 𝑟𝑙−1 is the receptive field on the input of layer 𝑙, 𝑠𝑙 is the stride of layer 𝑙, 𝑟𝑙 the

receptive field on the output of layer 𝑙, and 𝑘 𝑙 is the kernel size of layer 𝑙.

Convolutional kernels produce output neurons in the form of layers called feature maps

by scanning the whole inputs with the same weights. One feature map indicates a certain

feature’s existence through every region of the whole input. In general, a higher unit value

in a feature map means a feature represented by the kernels is more likely to exist in its

receptive field. This shared weight design makes convolution operators less sensitive to
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FIGURE 2.18: A schematic diagram of the receptive field of a convolutional neural network.
From Lin et al. [2017].

the location while focusing more on feature detection.

A convolutional layer has a subsampling nature representing a patch of input by a unit,

which can reduce the spatial size and resist slight deformation. Without padding, this

operation makes units at the boundary used less than units at the middle. To tackle this

problem, the modellers can insert units, normally zero values, at the outer boundary of

input data. This process, known as padding, influences the output size that is a function of

input size, kernel size, stride and padding (see Equation 2.15 from [Dumoulin and Visin,

2016]).

𝑜 = [ 𝑖 + 2𝑝 − 𝑘
𝑠

] + 1 (2.15)

where 𝑜 is the output size, 𝑖 is the input size, 𝑝 is the padding size, 𝑘 is the kernel size,

and 𝑠 is the stride. When the stride is bigger than one, a convolutional layer can efficiently

reduce the spatial size of input data. The value of each unit on the feature map results

from the information inside the receptive field on the input data. Therefore, a slight trans-

formation in the input data won’t change much on the feature maps. Particularly when a

pooling layer follows the convolution, it subsamples and smooths the feature maps, reduc-

ing the transformation sensitivity of outputs, which helps tackle irregular data with a shape

variation, such as fluvial channels.

Dilated convolution is a convolution operator that broadens the kernel by inserting empty

elements between kernel elements whose occurrence is controlled by a dilation rate [Yu
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and Koltun, 2015]. The dilated convolution layers have a larger receptive field than a

standard convolution layer when they have the same kernel sizes (see Figure 2.17 b). A

3×3 kernel with a dilation rate equal to 2, which means scanning every second unit within

the expanded kernels, has a receptive field of 5 × 5, capturing a bigger pattern at the same

computational cost as standard convolution using a 3 × 3 kernel. The new parameter, the

dilation rate, widens the kernel size and impacts the output size. The calculation of dilated

convolutional layers’ output size is given by [Dumoulin and Visin, 2016],

𝑜 = [ 𝑖 + 2𝑝 − 𝑘 − (𝑘 − 1) (𝑑 − 1)
𝑠

] + 1 (2.16)

where 𝑜 is the output size, 𝑖 is the input size, 𝑝 is the padding size, 𝑘 is the kernel size, 𝑠 is

the stride, and 𝑑 is the dilation rate. Though a dilated convolution can have a bigger recep-

tive field without increasing the computational workload by inserting empty elements, the

standard dilated convolution suffers a ‘gridding effect’ (see Figure 2.19) due to the loss of

neighbouring information [Wang et al., 2018a]. Thus, the modellers need to carefully tune

the hyper-parameters when designing a dilated neural network-based model to prevent the

increased efficiency from resulting in poor performance.

FIGURE 2.19: An illustration of gridding effect. (a) Ground truth of the semantic segmen-
tation maps. (b) A GAN suffers a heavy ‘gridding effect’. Modified after Wang et al.

[2018a].

Transposed convolution, also known as fractionally-strided convolution, swaps the ma-

trix multiplication during forward and backward calculation in standard convolution to

upsample the input data [Dumoulin and Visin, 2016]. In practice, the transposed convo-

lution operator transposes the sparse matrix in the standard convolution (see Figure 2.20).
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This operator provides an alternative way of upsampling (see Figure 2.17 c), which is par-

ticularly useful for deep generative models because they require both downsampling and

upsampling. The output size of transposed convolution is given by [Dumoulin and Visin,

2016],

𝑜 = 𝑠(𝑖 − 1) + 𝑘 − 2𝑝 (2.17)

where 𝑜 is the output size, 𝑖 is the input size, 𝑝 is the padding size, 𝑘 is the kernel size, and

𝑠 is the stride.

FIGURE 2.20: A schematic diagram of sparse matrix multiplications in convolution and
transposed convolution. From Islam and Kim [2019].

2.3.1.3 Optimisation

To date, deep generative models’ optimisation relies on backpropagation, which is an al-

gorithm that automatically calculates every parameter’s gradient for the gradient-based

optimiser [Rumelhart et al., 1985]. The backpropagation algorithm preserves all interme-

diate results during the forward calculation from inputs to outputs and then backpropagates

the error from the loss function based on the chain rule to re-calculate the gradients (adjust

the neuron weights). The chain rule is a formula to calculate the derivative of a compli-

cated function composed of a set of simple equations, given by Equation 2.18 for 𝑓 (𝑔(𝑥))
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[Guichard et al., 2020]
𝑑𝑓

𝑑𝑥
=
𝑑𝑓

𝑑𝑔
· 𝑑𝑔
𝑑𝑥

(2.18)

Then a gradient-based optimizer, for example, stochastic gradient descent [Robbins and

Monro, 1951], updates all the learnable parameters to minimize the objective function by

Equation 2.19 [Ruder, 2016]

𝜃 = 𝜃 − 𝜂 · ∇𝜃𝐽 (𝜃) (2.19)

where 𝜃 is the learnable parameters, 𝜂 is the learning rate that is a hyperparameter to decide

the impact of the gradient on one update step, and ∇𝜃𝐽 (𝜃) is the gradient of the objective

function to the parameters. Sutton [1986] highlighted two problems associated with the

gradient descent mechanism that slow down optimising the machine learning models. One

problem is the local minimum trap due to the steeper gradient in one direction than others,

and the other problem is the optimiser tends to modulate identified useful units instead of

exploring others to handle new patterns [Sutton, 1986].

Qian [1999] introduced a new term, momentum, to gradient descent algorithms by anal-

ogy with the Newtonian particles’ movements to accurate the convergence speed. The

current machine learning community widely adopts the implementation of stochastic gra-

dient descent (SGD) with momentum whose calculation given by Equation 2.20 [Ruder,

2016]

𝜐𝑡 = 𝛾𝜐𝑡−1 + 𝜂∇𝜃𝐽 (𝜃)

𝜃 = 𝜃 − 𝜐𝑡
(2.20)

where 𝜃 is the learnable parameters, 𝜂 is the learning rate, ∇𝜃𝐽 (𝜃) is the gradient of the

objective function to the parameters, 𝜐𝑡 and 𝜐𝑡−1 are the velocities at current and last time

steps, respectively, and 𝛾 is a constant hyperparameter of momentum term. SGD is sensi-

tive to the learning rate and uses the same learning rate to update all parameters, influencing

the convergence speed of learning rare features from sparse data [Kingma and Ba, 2014].

Kingma and Ba [2014] invented an adaptive moment estimation, Adam, to accelerate the

optimisation by computing an adaptive learning rate for every parameter. Adam combines
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AdaGrad and RMSprop’s advantages, which decay the learning rate based on the past gra-

dients for every parameter [Kingma and Ba, 2014]. Adam updates parameters by Equation

2.21 [Ruder, 2016]

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

𝜐𝑡 = 𝛽2𝜐𝑡−1 + (1 − 𝛽2)𝑔2
𝑡

�̂�𝑡 =
𝑚𝑡

1 − 𝛽𝑡1
𝜐𝑡 =

𝜐𝑡
1 − 𝛽𝑡2

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√
𝜐𝑡 + 𝜖

�̂�𝑡

(2.21)

where 𝑡 denotes the step index,𝑚 refers to the first-moment term (mean) of the gradients, 𝜐

refers to the second-moment term (variance) of the gradients, 𝑔 is the gradients, 𝛽1 and 𝛽2

are constant hyperparameters controlling the decay rates of the first and second moments,

respectively, �̂�𝑡 and 𝜐𝑡 are the bias-corrected first and second moments, respectively, 𝜃

is the learnable parameters, 𝜂 is the learning rate, and 𝜖 is a small constant preventing

the denominator becoming zero. Though Adam converges fast and has equal or better

performance than SGD and other adaptive gradient methods, many state-of-art models

still use SGD with momentum to achieve their best results as Adam seems not as good as

SGD with momentum regarding the generalisation performance [Kingma and Ba, 2014,

Loshchilov and Hutter, 2017, Wilson et al., 2017].

Loshchilov and Hutter [2017] claimed that L2 regularisation is not equivalent and works

less effectively than weight decay in Adam by comparing those two classical methods of

improvingmodel generalisation and, therefore, proposed a variant of Adamwith decoupled

weight decay called AdamW. Hanson and Pratt [1988] came up with the weight decay that

is given by the Equation 2.22 [Loshchilov and Hutter, 2017]

𝜃𝑡+1 = (1 − 𝜆)𝜃𝑡 − 𝛼∇ 𝑓𝑡 (𝜃𝑡) (2.22)

where 𝜃 is the parameter, 𝑡 is the step index, 𝜆 is the weight decay factor, 𝛼 is the learning

rate, and ∇ 𝑓𝑡 (𝜃𝑡) is the gradient of parameter. In contrast, the classical implementation of

L2 regularisation adds a penalty term when calculating the gradients, given by Equation
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2.23

𝑔𝑡 = ∇ 𝑓𝑡 (𝜃𝑡−1) + 𝜆𝜃𝑡−1 (2.23)

where 𝑔 is the gradients of parameters, 𝑡 denotes the step index, 𝑓 denotes the loss function,

𝜃 is the parameter, and 𝜆 is the L2 regularisation factor. This implementation in standard

SGD (combine Equation 2.19 and 2.23) is equivalent to applying weight decay. However,

L2 regularisation (Equation 2.23) involves the penalty term into the gradient that is later

used to calculate the first-moment and second-moment terms in Adam (see Equation 2.21),

leading to the inequivalence [Loshchilov and Hutter, 2017]. AdamW decouple the weight

decay from the gradient calculation during Adam optimisation that updates parameters by

Equation 2.24 [Loshchilov and Hutter, 2017]

𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑡 (
𝛼�̂�𝑡√
𝜐𝑡 + 𝜖

+ 𝜆𝜃𝑡−1) (2.24)

where 𝜃 is the parameter, 𝑡 denotes the step index, 𝜂 is a scaling factor, 𝛼 is the learning

rate, �̂�𝑡 and 𝜐𝑡 are the bias-corrected first and second moments, respectively, 𝜖 is a small

constant, and 𝜆 is the weight decay factor.

2.3.2 Encoder-Decoder Models

Encoder-Decoder models are end-to-end approaches that learn to map data from one do-

main to another, also known as the Sequence to Sequence model introduced by Sutskever

et al. [2014]. An Encoder-Decoder architecture commonly contains two neural network-

based models (also can be regarded as a single networks with two components), the En-

coder and the Decoder. The encoder compresses the data from a high-dimensional domain

into a lower latent representation. At the same time, the Decoder transfers data from the

latent state to the target domain that may differ from the input data domain. For example,

Sutskever et al. [2014] applied an Encoder-Decoder model to translate English to French.

As for reservoir modelling, Liu et al. [2019] used an Encoder-DecodeModel as their trans-

form net and a well-trained VGG-16 classifier as a feature extraction tool to generate fa-

cies models (see Figure 2.21). They proved their deep learning-based method, CNN-PCA,

outperformed traditional methods by comparing their way with the Principal Component
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Analysis (PCA) and the Optimisation-Based PCA (O-PCA) for realisation parameterisa-

tion and flow simulation history matching. The deep learning-based approach efficiently

parameterises (in terms of dimension reduction) the facies model and pre-images them

successfully with a high image quality showing semi-straight channelised shapes without

a blurred boundary around channels.

FIGURE 2.21: An example of Encoder-Decoder model generations compared to ground
truth and a benchmark solution. Modified after Liu et al. [2019]. (a) the ground truth
realisation. (b) a conditional realisation from O-PCA. (c) a conditional realisation from

CNN-PCA (a deep learning-based method with an Encoder-Decoder model).

2.3.2.1 Auto-Encoder (AE)

An Auto-Encoder is a particular case of the Encoder-Decoder model, whose input and

output domains are the same [Goodfellow et al., 2016]. It aims to reproduce its inputs at

the output layers (see Figure 2.22), which works as a non-linear solver of reducing data

dimension in its earlier applications [Goodfellow et al., 2016, Kramer, 1991]. Thus, AE

can efficiently compress non-linear data while free of the pre-image problem which is a

typical challenge of projecting compressed data back to the original data space for many

dimension reduction algorithms, such as PCA. A further application of AE is denoising,

also known as Denoising Auto-Encoder (DAE), which uses pairs of corrupted and clean

data instead of the same data as inputs and outputs [Goodfellow et al., 2016]. This change

broadens AEs application to handle many end-to-end tasks, for example, image denoising

that has achieved notable successes in denoising seismic images [Mandelli et al., 2019].

Canchumuni et al. [2017] applied Auto-Encoder to parameterise facies model and inte-

grated their trained Encoder and Decoder models into a history matching framework based
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FIGURE 2.22: A schematic diagram of the Auto-Encoder (AE) workflow.

on an ensemble smoother with multiple data assimilation (ES-MDA). Auto-Encoder suc-

cessfully reconstructs the facies model with minor errors at geo-bodies’ boundary (see

Figure 2.23). As their study case is PUNQ-S3, they created their training dataset using

Multi-point Statistics [Remy et al., 2009] and, therefore, their Auto-Encoder can only cap-

ture the spatial correlation represented by the MPS.

FIGURE 2.23: An example of Auto-Encoder generations showing the initial and reproduced
facies models. Modified after Canchumuni et al. [2017].

2.3.2.2 Variational Auto-Encoder (VAE)

Variational Auto-Encoder (VAE), a variant of Auto-Encoder, works by finding the multi-

variate latent distribution of the given datasets [Kingma and Welling, 2013]. VAE model

also contains an Encoder network and a Decoder network. However, instead of directly

creating a latent vector as the Decoder’s input, the Encoder produces a multivariate dis-

tribution, including a mean vector and a standard deviation vector, which generate an in-

put vector for the Decoder by sampling on the latent distribution. Figure 2.24 show a

schematic diagram of VAE. Unlike AE, which updates its parameters by only calculating
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the difference between original and reconstructed samples, VAE also needs to calculate

the Kullback–Leibler divergence (KL divergence) of the approximate from the true poste-

rior [Kingma and Welling, 2013]. This KL divergence term forces the latent distribution

to approach a prior distribution, for example, a multivariate Gaussian distribution.

FIGURE 2.24: A schematic diagram of the Variational Auto-Encoder (VAE) workflow.

Laloy et al. [2017] implemented a VAE to parameterise a set of binary facies models sim-

ulated by MPS, including 2D unconditional models, 2D conditional models and 3D un-

conditional models (see Figure 2.25). Compared to the training dataset, VAE captures

the sinuous patterns in 2D and reproduces 3D models that resemble the 3D data from

MPS. However, the conditional models from VAE have some mismatches in conditioning

data because they didn’t use any conditioning technique in their workflow and only relied

on the training dataset composed of conditional simulations from MPS. This condition-

ing method is inflexible in handling fields with different numbers and locations of wells,

which requires re-simulating the training dataset. Both the training dataset and trained

VAE become disposable, increasing the time and computational cost of deep learning-

based approaches.

2.3.3 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) refer to competitive learning between two neu-

ral network-based models called the generator and the discriminator [Goodfellow et al.,

2020]. Figure 2.26 shows a typical GAN workflow that plays a minimax game between

the generator and the discriminator to update their parameters using the loss function given
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FIGURE 2.25: An example of VAE results compared to the training datasets produced by
MPS. The red circles are well locations. Modified after Laloy et al. [2017].

by Equation 2.25 [Goodfellow et al., 2020]

min
𝐺

max
𝐷
𝑉 (𝐷,𝐺) = E𝑥∼𝑃𝑑𝑎𝑡𝑎 (𝑥) [log𝐷 (𝑥)] + E𝑧∼𝑃𝑧 (𝑧) [log (1 − 𝐷 (𝐺 (𝑧)))] (2.25)

where 𝑉 (𝐷,𝐺) denotes the GAN loss function, 𝐺 (·) and 𝐷 (·) are the generator and the

discriminator, respectively, 𝑧 denotes the input vector, 𝑥 denotes the real data, and E[·]

is the mathematical expectation. The generator projects a Gaussian (or Uniform) input

vector 𝑧 into a high-dimensional data domain 𝐺 (𝑧), for example, images. At the same

time, the discriminator aims to distinguish generated data𝐺 (𝑧) from real data 𝑥 as a binary

classifier. In practice, GAN labels real data 𝑥 as one and generated data𝐺 (𝑧) as zero when

calculating the loss value for the discriminator while labelling the generated data as one

when calculating the loss for the generator, then compares the discriminator outputs with

corresponding labels during training.

GAN training is notoriously challenging and unstable due to mode collapse, convergence

failure, gradient explosion and vanishment. Section 2.3.1.2 has explained gradient explo-

sion and vanishing gradients there. Mode collapse refers to GAN only creating one or a

few samples instead of all types of data shown in the training dataset (see Figure 2.27 from
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FIGURE 2.26: A schematic diagram of the Generative Adversarial Networks (GAN) work-
flow.

[Metz et al., 2016]). Avoiding mode collapse is, therefore, pretty influential in reservoir

facies modelling because the modellers often aim to reproduce the model diversity of re-

alisations to capture and quantify the subsurface uncertainty. Contrastingly, convergence

failure leads to visually bad images, with poor replication of shapes in the training data.

These issues attribute to the competitive nature of GANs. The discriminator improves at

the cost of the generator getting a larger loss and vice versa, making it difficult to attain a

balance point in the training process, called Nash equilibrium.

FIGURE 2.27: An illustration ofmode collapse. The top row is aGAN free ofmode collapse
problem. The bottom row is a mode collapse case of GAN. From Metz et al. [2016].

To address the training difficulties, many publications improve GAN in different aspects

of the GAN training workflow, for example, model structures, loss functions, and training

tricks. Researchers published some empirical training tricks at an earlier stage as GAN is

still not fully interpretable, which may be helpful in some cases but can’t ensure perfor-

mance and stability improvement. For example, Salimans et al. [2016] suggested using

label smoothing when computing the loss values, which means using smoothed values,

such as 0.1 and 0.9, instead of zero and one to label data. Those training tricks are easily

adaptable to different GAN training workflows. In contrast, some researchers changed the

42



model structures and loss functions, yielding a popular variant choice. For example, Rad-

ford et al. [2015] came up with a newGANmodel structure called DCGAN, Arjovsky et al.

[2017] replace the original loss function in Equation 2.25 with the Wasserstein distance,

namedWGAN. The following sections review popular GAN variants and their applications

to facies modelling.

2.3.3.1 Deep Convolutional Generative Adversarial Network (DCGAN)

The deep convolutional generative adversarial network (DCGAN) model is a benchmark

GAN structure broadly used in previous GAN applications as their models’ architecture,

including discriminators and generators [Radford et al., 2015]. Radford et al. [2015] pro-

vided a guideline to get a stable DCGAN by replacing pooling with convolutions and

transposed convolutions, applying batch normalisations, removing fully connected layers,

using ReLU and Tanh in the generator, and using Leaky ReLU in the discriminator (see

Figure 2.28).

However, DCGAN has many variants containing somewhat different elements. For exam-

ple, in some implementations, people still use fully connected layers in deeper architec-

tures instead of a fully convolutional neural network [Teoh and Rong, 2022]. Odena et al.

[2016] argued using transposed convolution caused the checkerboard artefacts (see Figure

2.29) and suggested using up-sampling followed by a convolution to avoid this problem.

As for facies modelling, Laloy et al. [2018] applied a variant of DCGAN, called spatial

GAN, that uses a 2D or 3D spatial tensor instead of the vector as the generator input

[Jetchev et al., 2016], to generate 2D and 3D binary facies model. The results show GAN

can reproduce binary realisations resembling its training data (see Figure 2.30). However,

as the training datasets used in their study are relatively simple geology, GANs’ learning

capability lacks a thoughtful exploration, resulting in wasting computational power. Their

direct conditioning method relies on searching a pre-trained GAN’s latent space, which

converges slowly and even fails to converge.

Zhang et al. [2019b] further explored GAN learning 2D and 3D geomodels while hon-

ouring well observations. They used the DCGAN architecture to train their unconditional

GAN and then optimised the latent vector of pre-trained GAN to honour well data (see
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FIGURE 2.28: A schematic diagram of DCGAN. (a) the generator architecture. (b) the
discriminator architecuture. 𝑧 denotes the input noise vector. CONV is the abbreviation

of the convolutional layer. From Hayashi et al. [2019].

FIGURE 2.29: An illustration of checkerboard artefacts. (a) A GAN suffers heavy checker-
board artefact. (b) A GAN is free of checkerboard artefacts. Modified after Odena et al.

[2016].
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FIGURE 2.30: An example of GAN application to 2D and 3D facies modelling. Modified
after Laloy et al. [2018].

Figure 2.31). They argued GAN outperformedMPS for creating conditional nonstationary

realisation by visual comparisons (see Figure 2.12 b and 2.31 b). One bright feature of their

conditioning method is the loss term calculating the distance between the mismatched well

location and the nearest location (pixel/voxel) that has the corresponding (correct) facies

instead of the difference between facies codes (please refer to Section 6.2 for the details).

However, their conditioning method still relies on an optimisation approach to minimise

mismatches at well locations.

FIGURE 2.31: An example of GAN producing 2D and 3D conditional realisations. Modi-
fied after Zhang et al. [2019b].

2.3.3.2 Wasserstein Generative Adversarial Network (WGAN)

Arjovsky et al. [2017] claimed that using JS-divergence as the loss function (see Equa-

tion 2.25) causes gradients to vanish, and came up with Wasserstein GAN, which uses

the Earth-Mover distance to replace JS-divergence as the loss function. WGAN updates

its discriminator, called critic in WGAN, by Equation 2.26 and updates its generator by

Equation 2.27

𝐿𝑜𝑠𝑠𝐷 = −E𝑥∼𝑃𝑥 [𝐷 (𝑥)] + E𝑧∼𝑃𝑧 [𝐷 (𝐺 (𝑧))] (2.26)
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𝐿𝑜𝑠𝑠𝐺 = −E𝑧∼𝑃𝑧 [𝐷 (𝐺 (𝑧))] (2.27)

where 𝑧 denotes the latent vector, 𝑥 denotes the real data, 𝐺 (·) and 𝐷 (·) are the sequential

calculations of the generator and the discriminator in neural networks, and 𝐸 [·] is the

mathematical expectation. To improve stability, Arjovsky et al. [2017] empirically applied

weight clipping on the discriminator’s parameters, forcing values to be between -0.01 and

0.01.

A further improved version of WGAN, called WGAN-GP, replaces weight clipping with

gradient penalty to force the discriminator to lie within the space of 1-Lipschitz functions

[Gulrajani et al., 2017]. The gradient penalty is an extra term in the loss function to penalise

the discriminator, whose calculation is given by Equation 2.28

𝐺𝑃 = 𝜆E𝑥 [(∥(∇𝐷 (𝑥))∥ − 1)2] (2.28)

where E[·] is the mathematical expectation, ∇𝐷 is the gradient of the discriminator pa-

rameters, 𝑥 is a linear interpolation between real and fake data, and 𝜆 is a constant weight

of gradient penalty.

Chan and Elsheikh [2019] applied WGAN to learn 2D binary channelised reservoirs and

combined pre-trained WGAN with an inference network to condition GAN generations

to well data. WGAN successfully learned the channel geometry (see Figure 2.32a), and

the conditional generation also has a good match to observed data (see Figure 2.32b).

Their conditioning method reuses the pre-trained neural networks, saving time in prepar-

ing datasets and training models. Instead of searching pre-trained GAN’s latent vector,

the inference network produces a new latent vector obeying Gaussian/uniform distribu-

tions that can also directly plugin existing model updating pipelines. However, as when

searching latent space, training an inference network can be slow and lead to convergence

failure (see more details in Section 6.2).

2.3.3.3 Conditional Generative Adversarial Network

The conditional generative adversarial network (conditional GAN) is a different type of

GANmodel, which uses extra information in and after training to constrain its generations.

To the best scope of my knowledge, the first conditional GAN model published by Mirza
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FIGURE 2.32: An example of WGAN producing 2D unconditional and conditional reali-
sations. Modified after Chan and Elsheikh [2019].

and Osindero [2014] incorporates conditioning data into both the generator and discrimi-

nator as an extra input during training. The conditional GAN model, therefore, calculates

the joint hidden representation of both data and conditions and updates its parameters by

Equation 2.29 [Mirza and Osindero, 2014]

min
𝐺

max
𝐷
𝑉 (𝐷,𝐺) = E𝑥∼𝑃𝑑𝑎𝑡𝑎 (𝑥 |𝑦) [log𝐷 (𝑥)] + E𝑧∼𝑃𝑧 (𝑧) [log (1 − 𝐷 (𝐺 (𝑧 |𝑦)))] (2.29)

where 𝑉 (𝐷,𝐺) denotes the conditional GAN loss function, 𝐺 (·) and 𝐷 (·) are the gen-

erator and the discriminator, respectively, 𝑧 denotes the input vector, 𝑥 denotes the real

data, 𝑦 is the condition and E[·] is the mathematical expectation. Although Mirza and

Osindero [2014] only shows a simple way of feeding conditioning data to GAN, this work

encouraged later studies on developing higher-order interactions of conditioning data, for

example, image-to-image translation models [Isola et al., 2017].

Image-to-image translation models predict images in a target domain based on given maps,

for example, semantic segmentation maps [Isola et al., 2017]. One popular model, called

𝑝𝑖𝑥2𝑝𝑖𝑥, uses convolutional neural networks to extract features from the conditioning data

as the extra inputs of the generator’s hidden layers [Isola et al., 2017]. Then Wang et al.

[2018b] further develop 𝑝𝑖𝑥2𝑝𝑖𝑥 model to tackle a high-resolution generation task, named

𝑝𝑖𝑥2𝑝𝑖𝑥𝐻𝐷, by decomposing the generator into two sub-networks. One sub-network

works as a global generator, and the other works as a local enhancer in which they are

jointly trained to produce high-resolution images (see Figure 2.33).
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FIGURE 2.33: A schematic diagram of 𝑝𝑖𝑥2𝑝𝑖𝑥𝐻𝐷 model’s generator architecture. G1
denotes the global generator. G2 denotes the local enhancer. From Wang et al. [2018b].

Park et al. [2019] developed a SPADE generator based on a conditional normalisation,

Spatially-adaptive de-normalisation (SPADE), to replace the 𝑝𝑖𝑥2𝑝𝑖𝑥𝐻𝐷model’s encoder-

decoder structure. SPADE uses convolutional neural networks to extract features from

conditioning data to modulate (denormalise) the generator’s normalised activations (out-

puts of normalisations, e.g. batch normalisation) [Park et al., 2019]. During training, the

SPADE learns to create two tensors to scale and bias the corresponding elements of the

generator’s normalised activations (see Figure 2.34). The two learned tensors modulate

the corresponding element values by Equation 2.30 [Park et al., 2019]

𝛾𝑖𝑐,𝑦,𝑥 (𝑚)
ℎ𝑖𝑛,𝑐,𝑦,𝑥 − 𝜇𝑖𝑐

𝜎𝑖𝑐
+ 𝛽𝑖𝑐,𝑦,𝑥 (𝑚) (2.30)

where 𝛾 is the learned scaling parameter, 𝛽 is the learned bias parameter, 𝑚 is the condi-

tioning data, ℎ is the hidden layer before normalisation, 𝜇 is the mean value of activation in

a certain pixel set, 𝜎 is the standard deviation of activation in a certain pixel set, 𝑖 denotes

the layer number of a deep convolutional network, and 𝑛, 𝑐, 𝑦, and 𝑥 are the index of the

batch, channel, height, and width dimension, respectively. Before feeding the condition-

ing data into SPADE, the SPADE generator downsamples it to adapt to every hidden layer

block’s size (see Figure 2.35). Compared to the 𝑝𝑖𝑥2𝑝𝑖𝑥𝐻𝐷 model, the SPADE gener-

ator decreases learned parameters by nearly half, favouring the training and reducing the

chance of overfitting [Park et al., 2019].

Song et al. [2021a] presented successes in using conditional GAN techniques to force

GAN generations to honour global features, well data and soft maps. Song et al. [2021a]

encoded global features, such as orientation and sinuosity, as an extra latent vector that
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FIGURE 2.34: A schematic diagram of SPADE. From Park et al. [2019].

FIGURE 2.35: A schematic diagram of SPADE generator. From Park et al. [2019].

is concatenated to the latent noise vector as the input vector of the generator. In contrast,

they used downsampling and convolutional layers to process the well data and soft data,

called the channel complexity probability map, to create extra feature tensors for each con-

volutional network block. Their results proved the conditional GAN techniques condition

GAN 2D realisations to the conditioning data from multiple sources (see Figure 2.36).

However, one significant problem is that all conditional GAN techniques require training

the conditional GAN for each specific case regarding the condition data. This means any

pre-trained GAN is less likely to be reused if one or more conditioning data changes, which

is very common in practice. For example, the entire model must be retrained to change the

soft conditioning data from the channel complex probability map to the seismic amplitude

map.
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FIGURE 2.36: An example of Conditional GAN creating 2D realisations honouring multi-
ple types of data. From Song et al. [2021a].

2.4 Summary of Chapter 2

This chapter overviewed three popular types of reservoir facies modelling tools: process-

basedmodels, geostatistical approaches andmachine learning-basedmodels. The process-

based model involves geoscientists’ understanding of how a reservoir formed in the sedi-

mentary processes, whose realisations show highly plausible geological patterns close to

the natural geology. Due to the computational cost and data conditioning difficulty, the

process-based model suits to create conceptual geomodels used as the training data for

geostatistical and machine learning algorithms. Geostatistics developed very well in the

past decades, which is more flexible to condition realisations to diverse types of observed

data, e.g. well and seismic data, than the process-based model. Still, geostatistics reali-

sations are not as plausible as process-based realisations, particularly when the reservoir

needs many facies to describe it. As both process-based and geostatistical models don’t

provide a direct parameterisation of their realisations (in terms of replacing simulated re-

alisations with a small set of parameters), the modellers often need a dimension reduction

tool to parameterise those simulated realisations, causing extra loss of geological realism.

On the other hand, machine learning-based facies modelling tools, deep generative mod-

els, preserve high-level geological realism up to the same level as their training data and

provide priors obeying either Gaussian or uniform distribution. However, the study of

deep generative models is still at a starting stage that uses realisations from object-based

models as the training dataset, leaving too many problems unsolved. For example, can

deep generative models learn well from process-based models with multiple facies?

Based on the literature review above, I choose GAN to investigate further the potential of
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using deep learning-based algorithms to incorporate geological knowledge into geomod-

els. Compared to VAE, GANs’ generations are less blurry in image synthesis and, there-

fore, show a clearer boundary between facies in geological modelling. This is important

to facies modelling when there is no apparent ordering. To date of I started my PhD, and

to the best scope of my knowledge, GANs succeeded in reproducing object-based models

but fewer in learning from process-based models, especially for multiple (more than five)

facies cases. Thus, I study to apply GAN to reproducing 3D multi-facies realisations from

a process-based model, FLUMY, shown in the following chapters.
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Chapter 3

Creation of Fluvial Training Dataset

Recent papers proved deep generative models’ capability of reproducing the relatively

complicated shapes of fluvial channel [Chan and Elsheikh, 2019, Laloy et al., 2017, 2018,

Song et al., 2021b, Zhang et al., 2019b]. The training datasets in previous papers are sim-

plified conceptual models of fluvial systems, mainly sinuous channels and associated levee.

These datasets are not quite suitable to represent a meandering river, as they lack essential

facies types, e.g. lateral accretion packages and various channel fills (please refer to the

reviews in section 2.3.2 and 2.3.3). Usually, earlier studies used object-based simulators,

e.g. TiGenerator [Maharaja, 2008] to create their training datasets, which are insufficient

to represent the complicated placement of lateral and downstream evolution happening in

natural fluvial rivers. On the other hand, facies simulations from process-based models

largely preserve the plausible facies shapes and transitions by simulating sedimentary pro-

cesses. Process-based models, therefore, are more suitable work as the training dataset to

train deep generative models, but no pre-canned benchmark dataset in this level of com-

plexity is available in the AI-based facies modelling application field. Though there are

many process-based simulators, this study chose FLUMY [Grimaud et al., 2022] as it is

fast enough to generate a number of models to cover the range of depositional parameter

uncertainty. This chapter introduces the process-based training dataset created and used

for this PhD study on applying GAN to 2D and 3D facies modelling.
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3.1 Low NTG Meandering Simulations from A Process-

based Model

3.1.1 FLUMY Simulation

MINES Paris Tech developed 𝐹𝐿𝑈𝑀𝑌𝑇𝑀 , a process-based model that builds facies real-

isations by a stochastic process of simulating channel migration and sediment deposition

along the river in time sequence (Free download from https://flumy.minesparis.

psl.eu) [Grimaud et al., 2022, Lopez, 2003]. This study uses version 5.9.12 of FLUMY

software as the simulator to create various meandering fluvial simulations reflecting a

range of sedimentary settings. FLUMY does not simulate the full physics of a river sys-

tem, including dynamic turbulent flow motion, sediment transport and deposition, etc, to

build up facies models. Instead, FLUMY sets up a couple of rules based on relationships

between channel geometry, accommodation space, flow velocity, flooding and avulsion

rates in fluvial systems to develop the model [Lopez et al., 2009]. FLUMY realisations

are more plausible than object-based models because FLUMY simulates channel evolu-

tion, starting from initialising channel centreline, lateral migrating to develop meanders,

and ending up with abandonment. By adjusting parameters, FLUMY can produce various

scenarios with different channel sinuosity and sand-body patterns, achieving the favoured

model effect. As a stochastic approach, FLUMY can create diverse facies realisations us-

ing the same settings but different random seed values to represent stochastic variability.

So, FLUMY is a desired simulator to build a plausible meandering fluvial facies model set

for GAN learning.

Facies models from FLUMY have nine facies that results from several geological pro-

cesses, such as channel migration, avulsion, meander cut-off, levee breaches and aggra-

dation (see Figure 3.1). By mimicking the evolution of meanders, FLUMY realisations

capture the varying channel geometry and point bars accretion as sand deposits accrete

on the channel’s inner bank with the channel lateral migration. Depending on the down-

stream location, sand and mud deposits fill the channels, forming the sand and mud plug

after channel abandonment occurs. FLUMY also captures the overbank and levee facies

with the development of meanders, representing the occurrence of overbank flooding. As
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a product of levee breach occurrence, FLUMY uses a constant probability to add detailed

crevasse splay sub-facies types, e.g. crevasse splay I, crevasse splay II and crevasse splay

channel. Please, refer to section 2.1 for a detailed review of those geological processes.

FIGURE 3.1: Processes of the meandering system in FLUMY. From 𝐹𝐿𝑈𝑀𝑌𝑇𝑀 v.5.912
user guide.

3.1.2 Set Ups of Low NTG Meandering Fluvial Systems

This study focuses on low net-to-gross (NTG) meandering fluvial systems based on two

considerations. First, low NTG meandering fluvial realisations have a bigger uncertainty

of sand-body connectivity, which is a major consideration in current reservoir modelling

pipelines because it further impacts most of the flow dynamic behaviour. For 3D mod-

els, the NTG threshold for connectivity is typically about 30% [Larue and Hovadik, 2006,

Willems et al., 2017], so this study targets the NTG to around 20% to simulate a set of 3D

models representing a wide range of connectivity. At the same time, the avulsion parame-

ters do not significantly impact the net-to-gross of simulation outputs when the target NTG

is 20%, and other parameters remain unchanged. Secondly, low NTG settings allow fa-

cies realisations to have less amalgamated channel elements, favouring more distinguished

objects. This feature benefits the GAN performance evaluation in later chapters.
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Determining the values of parameters in FLUMY relies on an embedded calculator, Nexus,

designed for the non-expert user [Bubnova, 2018]. Each setting of FLUMY parame-

ters runs five times to represent the natural system’s aleatory uncertainty by the inher-

ent stochasticity, e.g. the occurrence of overbank flooding and avulsion. Thanks to the

stochastic process, FLUMY can simulate different realisations under the same sedimen-

tary settings by varying the random seed values, which are ‘165426111’, ‘165426222’,

‘165426333’, ‘165426444’ and ‘165426555’, respectively (see Table 3.1). The Nexus cal-

culator has three inputs: channel maximum depth, sandbodies extension index (SEI) and

net-to-gross (NTG). To control the variable, this study fixed the channel maximum depth

to 5 meters in Nexus to automatically calculate the rest channel geometry parameters in

FLUMY. Based on a trial and error, FLUMY outputs have a net-to-gross of about 20%

when the net-to-gross parameter in Nexus equals 10%. By varying the SEI parameter,

the Nexus calculator can auto-fill the values of different parameters related to avulsion in

FLUMY. To verify the auto-filled avulsion period range, the records of the modern river

from Slingerland and Smith [2004] work as a reference in this study. Five values of the

SEI used in this study are the minimum (20), the maximum (160) and three unique val-

ues marking three different sand-body scenarios: ribbon type (50), standard type (80) and

sheet type (110). Table 3.1 summarises the necessary parameters in Nexus used to create

the 25 3D simulations. Nexus automatically calculates the rest of the FLUMY parame-

ters. Except for the avulsion parameters, the FLUMY parameters are the same in all 25

simulations (see Table 3.2).

TABLE 3.1: FLUMY parameters in Nexus to create 3D simulations

Parameters Values
Channel Maximum Depth 5
Sandbodies Extension Index 20,50,80,110,160
Net to Gross (%) 10
Grid Lags (DX, DY) 10
Give Number of Nodes (NX, NY) 256
Seed 165426111,165426222,165426333,

165426444,165426555

The setting above yields a set of low NTG (around 20% ranging from 10% to 23%) facies

models with different avulsion rates in a moderate sedimentation rate (about 0.4 cm/year)
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TABLE 3.2: FLUMY parameters determined by Nexus

Parameters Values
Erodibility Coefficient 5.16 × 10−8

Channel Width, Wavelength, Variable Scale (m) 50, 625, 100
Domain Margin (Multiple of Channel Width) 12
Flow Direction (Degrees Clockwise) 90
Slope Along Flow 0.001
Levee breaches during Overbank Flow No
Probability for Transition from CSI to CSII 0.5
Probability for Adding a New CS Channel 0.9
Equilibrium Profile Elevation, Changes (m) 9999, Never
Aggradation Type, Occurrence Overbank Flow, Poisson(100it)
Aggradation Thickness, Exponential Decrease (m) Normal(0.167,0.05), 1532
Levee Width (Multiple of Channel Width) 6
Wetland Proportion (%) 0
Draping Intensity (m/10000it) 0

environment. This dataset shows a range of plausible meandering fluvial patterns, cover-

ing a range of uncertainty (see Figure 3.2). Frequent avulsions result in the river having a

shorter time to develop meanders and favouring more ribbon-type sandbodies in vertical

sections and a smaller channel sinuosity in plane view (Figure 3.2a). On the other hand,

a lower avulsion rate gives the channel more time to develop, leading to more sheet-type

sandbodies in vertical sections and a bigger channel sinuosity raising meander cut-offs in

plane view (Figure 3.2c). Based on modern rivers’ records, Slingerland and Smith [2004]

suggested the avulsion period varied between 28 to 1400 years. While they also men-

tioned this range is not a theoretical limit to a realistic choice of avulsion period because

a smaller or bigger avulsion period may exist [Slingerland and Smith, 2004]. Therefore,

the above range is extra evidence for justifying the selected avulsion periods in this study.

Table 3.3 summarises the relationship between sandbodies extension index values and the

corresponding avulsion parameters in FLUMY used for the five groups’ settings.

TABLE 3.3: Avulsion parameters used in FLUMY

Group Number of different avulsion parameters 1 2 3 4 5

Sandbodies Extension Index 20 50 80 110 160
Regional Avulsion Period, 𝑇𝑅 190 480 800 1000 1500
Local Avulsion Period, 𝑇𝐿 105 270 435 600 885
Total Avulsion Period 68 173 282 375 557

Avulsion includes regional avulsion and local avulsion; 1
𝐴𝑣𝑢𝑙𝑠𝑖𝑜𝑛𝑃𝑒𝑟𝑖𝑜𝑑 = 1

𝑇𝑅
+ 1
𝑇𝐿
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FIGURE 3.2: FLUMY 2D realisation with different avulsion rates. Vertical sections are
picked along the normal direction of the global slope at the downstream side (red dash
line) and are ten times exaggerated in vertical size. (a) A facies model produced by a high
avulsion rate setting. (b) A facies model produced by a moderate avulsion rate setting. (c)

A facies model produced by a low avulsion rate setting.

3.2 GAN River-I Training Dataset Production

3.2.1 Three Datasets Representing Different Levels of Data Complex-

ity

Using pre-canned training datasets to train deep generativemodels can reduce computation

costs in speed and storage in the data reading and pre-processing. Though the 3D simu-

lations from FLUMY can directly serve as the feedstock for GANs, the training program

needs to pre-process the data before feeding it into the GAN model for every iteration.

Particularly for this study case, the FLUMY 3D simulation is a big (in terms of the num-

ber of voxels) training data and, therefore, often needs data pre-processing, e.g. random

cropping, value transformation, etc., which takes time for the CPU to read and process the

requests.

For the convenience of GAN training, an extra program of making the dataset slice all

FLUMY 3D facies realisations every 0.1 meters vertically to transform and store the train-

ing data in the format of 2D data/images with a clear name labelling the sample and slice.

To avoid undefined values, the program only picked the section between 0 to 64 meters in
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all 25 FLUMY simulations and sampled them every 0.1 meters. Therefore, the program

converts each 3D FLUMY simulation into 640 2D data/images whose size is 256 × 256,

and the training dataset contains 16,000 data/images in total. This training dataset is the

9-Facies dataset in GAN River-I. To make this training dataset reusable in the 3D GAN

study, each 2D training data has a name: ‘Group_Sample_Layer_Facies.format’. For ex-

ample, a 2D data named ‘2_1_0_Facies.npy’ indicates it is the base (0th) slice of the first

sample in the second avulsion rate group and stored in Ndarray format.

For the demand of developing deep generative models to learn complex patterns started

from simpler cases, another program created the 7-Facies dataset and 3-Facies dataset by

grouping the 9-Facies dataset. The main consideration of the reduction is the sedimentary

relationships between different facies and their likely rock properties, e.g. permeability,

representing subsurface reservoirs’ flow units. The 7-Facies dataset uses a ‘crevasse splay’

facies to represent three facies in the 9-Facies dataset: ‘crevasse splay I’, ‘crevasse splay

channel’ and ‘crevasse splay II’, and keeps the rest of facies unchanged. Then, each facies

variable uses one integer as its unique code in the training dataset. The program used a

similar process to create the 3-Facies dataset but a different grouping rule. The 3-Facies

dataset replaced the ‘channel lag’ and ‘point bar’ facies in the 9-Facies dataset with the

new ‘point bar’ facies since both are part of the lateral accretion packages in the mean-

dering fluvial system. A new ‘channel’ facies in the 3-Facies dataset replaced the ‘sand

plug’ and ‘mud plug’ facies in the 9-Facies dataset because they are both channel-fills in

abandoned channels, though their rock properties are significantly different, e.g. porosity

and permeability. Figure 3.3 presents an example of the same data in three different cases.

FIGURE 3.3: An example of FLUMY data in the three training datasets.

The three training datasets in GAN River-I provide different levels of data complexity in

the number of facies, catering for the demand of testing GANs in learning meandering
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fluvial systems with multiple levels of detail. All facies have unique codes in these train-

ing datasets for the convenience of using deep generative models that usually only tackle

numerical data (see Table 3.4).

TABLE 3.4: Relationship between 𝐹𝐿𝑈𝑀𝑌𝑇𝑀 Facies and Dataset Codes

Facies 9-Facies 7-Facies 3-Facies
Channel Lag 1 0 0
Point Bar 2 1 0
Sand Plug 3 2 1
Crevasse Splay I 4 3 2
Crevasse Splay II Channel 5 3 2
Crevasse Splay II 6 3 2
Levee 7 4 2
Overbank 8 5 2
Mud Plug 9 6 1

The 9-Facies dataset keeps the original facies code in FLUMY, preserving all detailed fa-

cies resulting from modelled geological processes. Channel lag (coarse residual) facies

and point bar (sand) facies compose lateral accretion packages at the channel inner bank

with lateral migration. Channel abandonment, e.g. avulsion andmeander cut-off, results in

the sand (sand plug) and mud (mud plug) deposit in abandoned channels. Sediments flow

out of the channel and deposit from proximal to distal, transitioning from silt to shale on

the flooding plain, forming levee facies and overbank facies every time overbank flooding

occurs. Once the levee breaches, water takes erosive deposits and places aside the me-

ander forming the Crevasse-splay-I facies. A constant probability controls the change of

erosive sediment to non-erosive, making another facies, Crevasse-splay-II. Another con-

stant probability decides whether to add a channel to the non-erosive deposits, creating

the Crevasse-splay-Channels facies. As this training dataset has all facies transitions no

matter how often, it is suitable to test GANs’ learning capability of multi-facies distribu-

tion resulting from detailed geological processes. However, this training dataset involves

too detailed crevasse splay descriptions with a tiny proportion, which current deep gener-

ative models easily ignore. Therefore, this study discards using this dataset and leaves the

challenge of fully capturing all processes’ mechanisms to future studies.

The 7-Facies dataset simplifies the original facies models by grouping the crevasse splay-

associated facies while preserving facies with contrasting rock properties. Of course,
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crevasse splay deposits may take up a significant proportion of the fluvial facies mod-

els and contain complex facies distribution [Burns et al., 2017]. However, this is not the

case in the FLUMY simulations with the settings in this study, as crevasse splay deposits

take about 0.4% in total. Still, the 7-Facies dataset preserves detailed facies distribution

in fluvial systems, impacting the flow response of subsurface reservoirs. This dataset can

also work as an ensemble of geomodels with complex sand distribution, describing the

connected point-bars scenario shown in Donselaar and Overeem [2008]. This dataset is

the benchmark for testing advanced deep generative models in reproducing multi-facies

distribution and is therefore used as the training dataset for the rest of multi-facies 2D and

3D modelling studies in Chapter 4 and 5.

The 3-Facies dataset, on the other hand, narrows the scope to channel geometry and lat-

eral accretion package placement. So, this dataset suits to test how much deep generative

models can learn to reproduce geologically plausible shapes. Especially this dataset can

work as a benchmark for a comparison study of different GAN models because three fa-

cies is almost the biggest number of facies used in recent works [Song et al., 2021b, Zhang

et al., 2019b]. For example, this thesis compares different GANs’ performance on learn-

ing meandering channels in Chapter 4 using this dataset as the training dataset. As this

dataset doesn’t contain detailed rock types in the channel, it can work as an ensemble of

geomodels, describing the isolated point bars scenario shown in Donselaar and Overeem

[2008].

3.2.2 Quantitative Analysis of GAN River-I

This section introduces quantitative analysis tools used to measure the training dataset as a

reference for evaluating GANs’ performance. Indeed, the quantitative evaluation of GAN

is a hot and open question in the GAN application research field, which is still controversial

[Borji, 2019]. This study only uses classical quantitative scores, including net-to-gross,

connectivity, etc., which will be described below, to capture the geological realism at a

certain level instead of thoroughly investigating how to quantify the geological realism of

the GAN River-I dataset and GAN results.
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3.2.2.1 Global Indicators

Global indicators referring to the entire model/deposit, e.g. facies proportion and con-

nectivity, describe the 3D models statistically using simple scores with low computation

costs. Those indicators measure simple but important global features that are often the

first considerations in subsurface modelling.

Facies proportion describes the area/volume of certain facies in the modelled domain

[Rongier et al., 2016]. This study uses equation 3.1 to approximate the facies proportion

and takes the sand-prone facies proportion as the NTG.

𝐹𝑎𝑐𝑖𝑒𝑠 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =
𝑁 𝑓 𝑎𝑐𝑖𝑒𝑠

𝑁𝑡𝑜𝑡𝑎𝑙
(3.1)

where 𝑁 𝑓 𝑎𝑐𝑖𝑒𝑠 is the total number of cells of the facies; 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of cells.

For the GAN studies for multi-facies modelling, three facies in the 7-Facies dataset are

sand-prone (net) facies for the NTG and connectivity calculations: channel lag, point bar

and sand plug. This grouping slightly underestimates the actual NTG and sand connectiv-

ity because it ignores sand (net) facies from other sources, e.g. crevasse splay. Still, the

NTG and connectivity calculated this way adequately evaluate GANs’ performance as this

grouping applied to both the training data and GANs realisations.

Connectivity characterises how well the facies are connected in the discretised grids based

on the connected component, meaning the connected cells belong to the same connected

body, which often refers to static connectivity in reservoir studies [Hovadik and Larue,

2007, King, 1990, Rongier et al., 2016]. A cell has three possible neighbourhoods de-

pending on the connection type (see Figure 3.4). This study uses the Cartesian grid, thus,

taking the face-connected definition of the connected neighbourhoods. As for the connec-

tivity calculation, the biggest connected sand-body connectivity and the facies connected

probability are two widely used connectivity indicators in literature [Hovadik and Larue,

2007, King, 1990].

The biggest connected sand-body connectivity is defined as the area/volume ratio of the

biggest connected component to the total components of the facies [King, 1990], given by
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FIGURE 3.4: Different types of connected neighbourhoods for a given central cell. From
Deutsch [1998], Rongier et al. [2016]

Equation 3.2

𝐶𝑏𝑖𝑔𝑔𝑒𝑠𝑡 =
𝑛𝑚𝑎𝑥𝑓 𝑎𝑐𝑖𝑒𝑠

𝑁 𝑓 𝑎𝑐𝑖𝑒𝑠
(3.2)

where 𝑛𝑚𝑎𝑥𝑓 𝑎𝑐𝑖𝑒𝑠 is the number of cells of the largest connected component of the facies;

𝑁 𝑓 𝑎𝑐𝑖𝑒𝑠 is the total number of cells of the facies.

The facies connected probability refers to the probability of two cells with the same facies

belonging to the same geo-body [Hovadik and Larue, 2007], given by Equation 3.3

𝐶𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝑁2
𝑓 𝑎𝑐𝑖𝑒𝑠

𝑛 𝑓 𝑎𝑐𝑖𝑒𝑠∑
𝑖=1
(𝑛𝑖𝑓 𝑎𝑐𝑖𝑒𝑠)

2 (3.3)

where 𝑁 𝑓 𝑎𝑐𝑖𝑒𝑠 is the total number of cells of the facies; 𝑛 𝑓 𝑎𝑐𝑖𝑒𝑠 is the number of connected

components of the facies; 𝑛𝑖𝑓 𝑎𝑐𝑖𝑒𝑠 is the number of cells of the connected component 𝑖

associated to the facies.

This study uses the NTG and the biggest connected sand-body connectivity to illustrate

that the GAN River-I dataset covers a wide range of connectivity within a similar NTG.

To calculate the area/volume of the connected bodies, this study uses a Python package,

scikit-image, to pick the cells belonging to the same connected body [van der Walt et al.,

2014]. Due to the limited number of 3D models available, four sets of 3D cubes are cre-

ated by sampling the original 3D models with a stride of 1 and thickness of 64, 32, 16,

and 8, respectively. (See Figure 3.5). As mentioned earlier, the calculation operates on

sand-prone facies, including channel lag, point bar and sand plug, and treats the crevasse

splay-associated facies as silt for simplicity, though the crevasse splay I and crevasse splay
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channel are often sand-prone. Those four connectivity plots show the data point spread

widely in the connectivity domain within an NTG of mostly about 0.18. When sampled

with a smaller thickness, the cubes cover wider areas in the NTG-connectivity 2D do-

main. The later NTG-connectivity plots for 2D models can be regarded as a product of

subsampling with a stride of 1 and a thickness of 1 slice (Figure 3.7).

Based on percolation theory, researchers used S-curves to fit the relationship between NTG

and connectivity, describing the reservoir connectivity quantitatively [King, 1990, Larue

and Hovadik, 2006]. The connectivity rapidly increases in the S-curve plot once the NTG

surpasses the percolation threshold, around 0.3 for the 3Dmodels (see Figure 3.6 a) [King,

1990, Larue and Hovadik, 2006]. However, geological features may cause connectivity

for a given proportion to increase or decrease, resulting in a divergence between the per-

colation threshold in theory and natural geological systems. For example, channelised

sand with a more meandering shape will lead to greater overall connectivity than those

with straight channels, which need a bigger NTG to reach the same volume of connected

sand-bodies [Larue and Hovadik, 2006]. Individual realisations in an ensemble of stochas-

tic geological models would scatter within an area around an S-curve called the cascade

zone. The ensemble’s average response may shift to the left or right side of the S-curve,

indicating the geological features increase or decrease the sand-body connectivity. So, for

individual realisations, their relationships of NTG and connectivity might differ from the

predicted values by the S-curve based on the percolation theory alone.

To avoid the repetition of 2D facies slices, fifty 3D facies realisations with a 32-meter

thickness compose a reference set for the sand connectivity and proportion in 3D. This

reference set is originally from GAN River-I, which has twenty-five 3D FLUMY models

with 64 meters of thickness. The reason for creating this reference set is the 3D study in

Chapter 5 tests the algorithm to build 3D facies models with 32 meters for a lower cost

of storing simulated ensemble. Splitting those FLUMY models in the middle makes them

a fifty-point set, yielding the sand connectivity plot against NTG (see Figure 3.6 b). The

NTG of individual models in the 3D reference set is around 0.2, smaller than the theoretical

threshold value (0.3) of the percolation model in the 3D case because this reference set

origins from a low NTG meandering fluvial set, GAN River-I.
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FIGURE 3.5: Plots of Connectivity VSNTG for the sampled 3D cubes from the 25 FLUMY
3D facies models. FLUMY_G1 to FLUMY_G5 in the left column refer to the avulsion
rate groups in Table 3.3, denoting avulsion rate from high to low (avulsion occurrence
period from short to long). Plots in the right column are corresponding Hexbin plots
of all 3D cubes. The 3D cubes are the results of sampling with the stride of 1 and the

thickness of (a) 64, (b) 32, (c) 16, and (d) 8 slices, respectively.
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FIGURE 3.6: Plots of sand connectivity in 3D against proportion. (a) A schematic diagram
of percolation theory, showing the S-curve and Cascade zone. Modified after Larue and
Hovadik [2006]. (b) A plot of sand connectivity against proportion for 50 FLUMY sim-
ulations with 32 meters of thickness. The area within the two black dashed lines is the

Cascade zone.

As Figure 3.6 b) shows, this fifty-point dataset’s scatter greatly diverges from the idealised

S-Curve prediction and gets high connectivity at a lower NTG threshold value at high

avulsion and, therefore, lower sinuosity realisations. This is because of the joint effects of

channel developments and avulsions. The high avulsion rate simulations (groups 1 and 2)

generally have high sand-body connectivity as the frequent change of channels increases

the probability of connecting sand bodies in 3D. While sand in the low avulsion rate sim-

ulations (groups 4 and 5) more likely distributes laterally, forming sheet-type point bars,

occasionally avulsion changes the sand’s lateral accretion place, which may result in iso-

lated point bars. Those models have low NTG and moderate sedimentation rates, meaning

that mud takes a much bigger proportion than sand and deposits at a reasonable speed,

increasing the chance of sealing the old sand bars when the meander takes a long time to

develop at other locations. Thus, the low avulsion rate simulations show a bigger varia-

tion in connectivity. The high scatter in connectivity for a given NTG suggests that GAN

should honour the high uncertainty in the predicted connectivity of this type of geology in

its realisations.

The same analysis is also carried out on the 2D slices as the later study in Chapter 4

aims to reproduce 2D models first. Instead of plotting all data, a subset samples 10%

from GAN River-I with 16,000 2D slices by picking every ten 2D slices, which ensures
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a good diversity in a dataset volume of 1,600 FLUMY realisations. Due to the nature

of the fluvial 3D model, any 2D layer resembles layers immediately above or below it

because river channels have a few meters in depth, while the interval between image slices

in GAN River-I is only 0.1 meters. Unlike the connectivity of 3D models, both low and

high avulsion rates 2D facies models show a wide range of connectivity and overlap among

different groups as the 2D models have bigger percolation threshold of connectivity than

the 3Dmodels [Masihi and King, 2012]. Therefore, this study plots all 2Dmodels together

instead of further categorising them based on the avulsion rates in the connectivity plot (see

Figure 3.7). Data points spread wide in the two connectivity indicators and NTG space,

which can be used as the reference later to analyse the diversity of GANs’ generations.

FIGURE 3.7: Plots of Connectivity VS NTG for the subset 2D facies models.

Another connectivity plot calculates the probability of two cells with the same facies be-

longing to the connected component against the lag distance [Renard and Allard, 2013].

This study uses a Python library, loopUI-0.1, to plot the sand connectivity probability

curves for all 2D slices, which calculates the connectivity probability along the lag dis-

tance by Equation 3.4 [Pirot et al., 2022]

𝜏(ℎ) = 𝑃𝑟𝑜𝑏(𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 (𝑠, 𝑠 + ℎ) | 𝑋 (𝑠) = 1, 𝑋 (𝑠 + ℎ) = 1) (3.4)

where ℎ denotes the lag distance, 𝑠 denotes the start point,𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 refers to the function

of judging if the two cells are connected based on the definition of the face-connected

neighbourhood in Figure 3.4, and 𝑋 is the facies variable of the given cell. This plot

illustrates GAN River-I dataset has a wide range of connectivity probability (see Figure
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3.8). The red solid line shows the mean value, and the black box plot indicates 75%,

medium, and 25% cases of the GAN River-I dataset.

FIGURE 3.8: Plots of sand connectivity probability as a function of lag distance for the
subset 2D facies models. Each line represents one sample’s sand connectivity probability.

3.2.2.2 Low Dimensional Representation Visualisation

Assessing model diversity in GAN River-I provides a reference for the mode collapse de-

tection, which is an important indicator of evaluating GANs’ performance in later chapters.

Analysing the similarity in a dataset often relies on dimensionality reduction tools, such

as t-SNE and UMAP, to visualise high dimensional data in low dimensional space (2D

or 3D) [McInnes et al., 2018, Van der Maaten and Hinton, 2008]. This type of analysis

interprets the model diversity in an ensemble of data based on their global structure and

the local structure, providing a richer information-involved representation than classical

global indicators, for example, sand proportion and connectivity. A plot of the training

dataset can work as the reference to check if GANs learn diverse types of data, which is

particularly important to detect the mode collapse issue mentioned in section 2.3.3.

This study employs a dimension reduction technique that allows visualising the ensemble

of models’ diversity, UMAP, to assess the diversity of the GAN River-I dataset by pro-

jecting it into a 2D metric space. UMAP assumes high dimensional data has a uniform

distribution on a locally connected manifold and uses a k-neighbour-based graph learning

to estimate this local manifold to represent the data in a low dimension [McInnes et al.,

2018]. Compared to other popular dimension reduction algorithms, e.g. t-SNE, UMAP
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runs faster, which is why this study chose UMAP to visualise GAN River-I. UMAP’s ran-

dom number generator allows using random seeds to repeat the transformed results. This

study fixed the number of neighbourhoods, 𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠, as 15 and the effective mini-

mum distance between embedded points, 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡, as 0.1; both are UMAP parameters to

impact the estimation result of the local manifold. A big 𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠makes the manifold

involve more global features, while the manifold considers more local features when the

number of the neighbourhood is small. In contrast, the 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 determines the appear-

ance of UMAP results; a smaller𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 leads to more clumped embedded points, while

a larger 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 makes the embedded points spread wider.

One analysis interprets the distribution of GAN River-I data from different avulsion rate

groups in UMAP space. Figure 3.9 shows the data spread widely in the UMAP space, and

the data clouds from different avulsion rate groups overlap significantly. Primarily, the

high avulsion rates (Group 1 and 2) data spreads closer to each other and largely overlaps

data clouds from other groups. With the decrease in avulsion rate (group changes from 1

to 5), the data points gradually spread wider and outer to the centre area of the embedded

cloud. The low avulsion rates (Group 4 and 5) data spreads much broader, and many

distribute at the outer edge of the embedded plot of GAN River-I. As later GAN studies

in this thesis use the same UMAP projector, this interpretation provides a basic insight

into the geological patterns’ diversity, which can be used as the reference to detect mode

collapse and check which type of geological patterns are missed.

Another analysis verifies the correlation between the meandering pattern and the coordi-

nates in UMAP space by picking data from the central and outer areas of the data cloud.

Five points, including the minimum or maximum values in each dimension and one point

in the middle of the cluster, highlight their geological patterns in the original data space

(see Figure 3.10). The data in the middle of the UMAP cluster show a clear thin mean-

der belt with less extended sand bodies. In contrast, the four points at the outer area all

represent highly meandering models with wide extended sand bodies. This observation

consists of the plot of data against avulsion rates. FLUMY uses the same initialisation of

channels when given the same random seed and creates new thin channels when avulsion

occurs. A moderate sedimentation rate allows a slight slope of sand bodies in the vertical

section. After the discretisation with very small intervals (0.1m), some horizontal slices

68



FIGURE 3.9: Plot of the GAN River-I dataset in the UMAP 2D space. FLUMY_G1 to
FLUMY_G5 denote FLUMY realisations from groups 1 to 5 in Table 3.3, denoting avul-

sion rate from high to low (avulsion occurrence period from short to long).

contain partial sand bodies, either the bottom or the top of the meander belt, presetting

thin meandering patterns. Therefore, the narrow meandering patterns also exist in the low

avulsion rate training images, accounting for the overlap in the UMAP space.

FIGURE 3.10: Five points interpretation of the UMAP 2D space.

A further study traces the sequential slices of a depositional succession in UMAP space to
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study the relationship between FLUMY depositional patterns in data and UMAP metric

space. This analysis uses sequential slices from a given succession containing a channel

evolution in 3D. Another 3D succession would be in a different location in the UMAP

space due to stochasticity. Figure 3.11 shows the selected succession in the UMAP metric

space. With the lateral development of the point bar, data highlighted in blue locates closer

to the data cloud’s edge in UMAPmetric space. This trend continues till the channel aban-

donment occurs leaving a narrow residual upper part and a new narrow channel emerges in

the simulated area. This study correlates the channel evolution to the coordinates change

in UMAP metric space, accounting for high avulsion rates FLUMY models from Group 1

and Group 2 cluster centrally but FLUMY models with lower avulsion rates (Group 3, 4,

5) distribute wider in the UMAP visualisation plot. A low avulsion rate allows channels

to have a longer time to develop laterally than a high avulsion rate.

FIGURE 3.11: A vertical set of FLUMY realisations in UMAP 2D space.
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3.2.3 Qualitative Analysis of GAN River-I and A Proposed Qualita-

tive Score

Qualitative analysis of geological realism often relies on visual interpretation based on hu-

man knowledge and understanding of geology. Though subjective, human interpretation

provides a thoughtful judgement on the agreement between modelled and natural geology

that is hard to quantify fully. GAN River-I is a set of 2D slices according to elevation

instead of the depositional surface. A 2D slice may contain detached geobodies or debris,

while the slice above or below may contain additional geometric information that shows

the detached geo-body or debris trace is part of a meander. However, those unfavourable

features introduce extra learning and evaluating difficulties because geologists might also

label those images as bad quality results. As mentioned in section 3.1.1, FLUMY is built

upon a set of assumptions and is not designed to capture all detailed features of a realistic

meandering fluvial reservoir, e.g. shale drapes between point bars. This project aims to

reproduce FLUMY realisations with its strengths as well as flaws and refers to the facies

models from FLUMY as the ‘ground truth’. Because this project aims to recreate the com-

plex outputs of the FLUMY models using GANs, not to replicate a natural river system.

The best result of machine learning-based models, such as GANs, is achieving comparable

model quality as its training dataset.

This study highlights two types of ‘artefacts’ caused by discretisation in GAN River-I. The

debris traces make the training data ‘noisy’, containing dot points or dash lines (see Figure

3.12). Considering the channel lag facies (orange colour) often show dot points/dash lines

features, the debris traces might introduce more bias on this type of feature but should not

ruin GAN generations’ quality because it only takes up around 0.5‰ in GAN River-I. In

contrast, the detached geo-body exists in a few 2D slices, taking up about 1%, which is

part of a meander belt above or below it (see Figure 3.13). Those detached geobodies may

encourage GANs to create artefacts when using GAN River-I to train GANs to reproduce

2D slices.

Inspired by the qualitative analysis of GAN River-I, a proposed occurrence-based score
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FIGURE 3.12: FLUMY 2D slices containing debris trace. The red dashed rectangular line
highlights the location of the debris trace. The black dash line rectangular shows the
corresponding geo-body above or below the realisations with debris trace (red dash line

rectangular).

FIGURE 3.13: FLUMY 2D slices containing detached geo-body. The red dash line rect-
angular is the location of the detached geo-body. The black dash line rectangular shows
the corresponding geo-body above or below the realisations with detached geo-body (red

dash line rectangular).
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requires the modeller/geologist to manually count the number of facies realisations con-

taining a specific geologically unrealistic feature and then calculate the unrealistic realisa-

tions ratio to total realisations. The calculation of this occurrence-based score is given by

Equation 3.5

𝑆𝑐𝑜𝑟𝑒 =
𝑁 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒

𝑁𝑡𝑜𝑡𝑎𝑙
(3.5)

where 𝑁 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 refers to the number of facies realisations having a certain feature, and

𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of facies realisations used in this calculation. This occurrence-

based score relies on many realisations to approach the probability of creating a certain

feature and is subject to human interpretation. Still, it delivers high-level information about

the model quality. Later chapters also use this occurrence-based score to evaluate GAN

performance by calculating recurrent unrealistic features. This is because detecting the

occurrence of a recurrent unrealistic feature is much more straightforward than visually

judging if a change of GAN settings improves its generation quality. So, the lower the

proposed score, the better the GAN performance in reducing a certain unrealistic feature.

3.3 Summary of Chapter 3

This chapter presented the process of creating the pre-canned training datasets, GAN

River-I, used for GAN studies in the following chapters, starting from introducing the

FLUMY software to selecting parameters and then to data pre-processing. For the conve-

nience of evaluating GANs realisations using visualisation and connectivity, I decided to

focus on low net-to-gross meandering fluvial models in this thesis. Considering the num-

ber of facies used in previous papers, I chose the three-facies version of GANRiver-I in the

comparison study to select a GAN variant as the baseline for the multi-facies modelling

study. To avoid excess concentration on facies with very small proportions, I decided to

use the seven-facies version of GAN River-I as the benchmark for the rest studies of GAN

for multi-facies modelling.

Using this seven-facies GAN River-I dataset as the reference, this chapter carries quanti-

tative and qualitative analyses, introducing methods used to evaluate GAN performance

in later chapters. I adopted classical indicators used in geomodels description, including

facies proportion and connectivity, as the quantitative measures. Then, I visualised the
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GAN River-I dataset in a 2D space using a dimension reduction tool, UMAP, to show its

model diversity. Also, this UMAP visualisation assists in assessing the model diversity in

GAN-simulated ensembles in the following chapters. As GAN aims to deceive humans’

interpretations, visual assessment is the most essential criterion in the GAN evaluation. I

highlighted some odd patterns in GANRiver-I raised by FLUMY’s discretisation and came

up with an occurrence-based score to assist in the qualitative analysis of GAN-simulated

ensembles in later chapters.
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Chapter 4

Fluvial GAN for Unconditional 2D
Facies Modelling

This chapter studies generative adversarial networks (GANs)’ learning capacity of 2D

multi-facies meandering fluvial patterns from process-based models. This thesis starts

from 2D instead of 3D modelling to avoid data scarcity and trapping in GANs’ learning

difficulties, and then extends GANs in 2D to tackle 3D challenges in Chapter 5. This

chapter selects a baseline GAN by comparing different GAN variants succeeding in recent

publications Chan and Elsheikh [2019], Laloy et al. [2018]. Then further research devel-

ops this baseline GAN to tackle identified difficulties to enhance GAN’s performance in

learning key geological features of meandering systems, named Fluvial GAN.

4.1 Comparison Study of Popular GAN Variants

GANs have various setups, favouring learning different geological models while devel-

oping a general solution to improve the learning capability for all GAN variants is very

time-consuming and difficult. Because a general solution needs to be proven to work

well with different datasets and GANs, which takes a long time to train, verify and test

the proposed solution, so, this section doesn’t aim to develop a general solution but uses

the 3-Facies version of GAN River-I to compare different GANs for learning meandering

fluvial patterns, which is used as the baseline model for further development. Different
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GANs differ in model structures, loss calculations and training strategies. So, selecting a

high-potential GAN variant as the baseline for further study from different GAN variants

available needs a proper comparative study, which set-up is better for modelling mean-

dering fluvial patterns. As earlier successful GAN applications to multi-facies modelling

mostly use three facies models as their training dataset [Song et al., 2021b, Zhang et al.,

2019b], this comparison study also uses the three facies models as the training dataset to

avoid incompatible comparison.

4.1.1 Comparative Study Design

Four popular GANs are the candidates in this comparison study according to earlier suc-

cesses in facies modelling and the computer vision domain [Chan and Elsheikh, 2019,

Isola et al., 2017, Li and Wand, 2016, Zhang et al., 2019b]. The four candidates are DC-

GAN, WGAN, WGAN-GP and PatchGAN [Arjovsky et al., 2017, Gulrajani et al., 2017,

Isola et al., 2017, Li andWand, 2016, Radford et al., 2015]; see the review provided in sec-

tion 2.3.3. PatchGAN is a successful application in image-to-image synthesis [Isola et al.,

2017, Li and Wand, 2016]. This study introduces PatchGAN into unconditional data syn-

thesis because of its discriminator’s bright feature of tackling high-resolution images (see

Figure 4.1). PatchGAN discriminator evaluates data in the patch level, a smaller region

in the inputs as it doesn’t have dense layers or convolutional networks in its deeper archi-

tecture [Li and Wand, 2016]. This feature reduces the number of learnable parameters,

benefiting the training process [Isola et al., 2017, Li and Wand, 2016].

All GAN variants use the same generator with deep convolutional architecture and the

default values of hyper-parameters in their original papers, except for PatchGAN [Arjovsky

et al., 2017, Gulrajani et al., 2017, Li and Wand, 2016, Radford et al., 2015]. This study

adopts the PatchGAN settings in Park et al. [2019] and adds an extra term, zero-centred

gradient penalty, in its loss function to avoid mode collapse. Compared the one-centred

gradient penalty in Gulrajani et al. [2017], the zero-centred and has a different centre value

in its calculation, given by Equation 4.1

𝐺𝑃 = 𝜆E𝑥 [(∥(∇𝐷)𝑥 ∥ − 𝑐)2] (4.1)
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FIGURE 4.1: A schematic diagram of PatchGAN discriminator architecture. 𝐶𝑁𝑁𝐵𝑙𝑜𝑐𝑘
denotes a convolutional neural network block composed of a convolutional neural net-
work, a normalization, and an activation. 𝐶𝑜𝑛𝑣 is a convolutional layer. 𝑀𝑎𝑡𝑟𝑖𝑥 is the

output identity in the format of matrix

where 𝜆 is a constant weight of gradient penalty, E[·] is the mathematical expectation, ∇𝐷

is the gradient of the discriminator parameters, 𝑥 is a linear interpolation between real and

fake data, and 𝑐 is the centre value that equals to zero and one in the zero-centred gradient

penalty [Thanh-Tung et al., 2019] and the one-centred gradient penalty [Gulrajani et al.,

2017], respectively. So, the improved hinge loss function is given by Equation 4.2

𝐿𝑜𝑠𝑠 =


𝐿𝑜𝑠𝑠𝐷 + 𝐺𝑃0−𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑

𝐿𝑜𝑠𝑠𝐺

(4.2)

where𝐺𝑃0−𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 is the zero-centred gradient penalty, 𝐿𝑜𝑠𝑠𝐷 and 𝐿𝑜𝑠𝑠𝐺 are hinge losses

for the discriminator and the generator, respectively. The calculations of 𝐿𝑜𝑠𝑠𝐷 and 𝐿𝑜𝑠𝑠𝐺
are given by Equation 4.3 and 4.4, following the implementation in Lim and Ye [2017],

𝐿𝑜𝑠𝑠𝐷 = E𝑥∼𝑃𝑥 [max(0, 1 − 𝐷 (𝑥)] + E𝑧∼𝑃𝑧 [max(0, 1 + 𝐷 (𝐺 (𝑧)))] (4.3)

𝐿𝑜𝑠𝑠𝐺 = −E𝑧∼𝑃𝑧 [𝐷 (𝐺 (𝑧))] (4.4)

where 𝐺 (·) and 𝐷 (·) are the sequential calculations of the generator and the discriminator

in neural networks, and E[·] is the mathematical expectation.
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Table 4.1 summarises GANs settings used in this study. The original setting of every GAN

candidate might not be optimal for generating meandering fluvial patterns, and further

improvements on those GAN variants may achieve better results. However, considering

the time cost, this study can only select one best-performing GAN and further develop it

instead of making improvements for every GAN variant.

TABLE 4.1: Summary of GANs set up in the comparison study.

GANs Name DCGAN WGAN WGAN-GP PatchGAN

D architecture DC DC DC Patch
Normalization Batch Batch Layer Spectral instance
Loss Function Cross entropy Wasserstein Wasserstein Hinge loss
Extra term None Weight clipping 1-centred GP 0-centred GP
Optimiser ADAM RMSprop ADAM ADAM
Train D/G 1 5 5 1

DCdenotes the deep convolutional discriminator. Patch denotes the PatchGANdiscriminator. D denotes
the discriminator. G denotes the generator. 1-centred GP denotes the one-centred gradient penalty. 0-centred
GP denotes the zero-centred gradient penalty.

Apart from the differences in model architecture and optimisation, the data pre-processing,

training dataset and epochs are the same for all GAN variants. The data pre-processing

linearly rescale the encoded facies integers to [-1, 1], following earlier GAN applications

[Chan and Elsheikh, 2019, Song et al., 2021b, Zhang et al., 2019b]. To make it easier to

determine and pick a type of meandering fluvial model, this study separates the 3-Facies

version of GAN River-I into two training datasets; one only includes high avulsion rate

models from Groups 1 and 2, and the other comprises low avulsion rate models from

Groups 4 and 5 in Table 3.3. The training for every GAN variant runs 100 epochs on each

training dataset individually, yielding eight trained GAN models.

This study relies on visual analysis of GANs’ generations according to qualitative criteria

regarding the meandering pattern and GAN learning. The major criteria are the geological

consistency between GANs’ generations and their training dataset, particularly the curvi-

linear shape of the channel and point bar placement. In Figure 4.2, the red circle highlights

the meandering channel’s geometry, and the blue circle shows a typical example of point

bar placement along the channel. As mentioned in section 2.3.3, GAN often surfers the

mode collapse issue. So, the occurrence of mode collapse is also one of the qualitative

evaluation criteria in this study.
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FIGURE 4.2: An example of the meandering pattern from GAN River-I showing the geo-
logical consistency criteria.

4.1.2 Result and Discussion

This study first evaluates GANs’ performance in learning high avulsion rate models by

randomly generating realisations from the four trained GAN variants. Visual comparison

of the results based on the criteria mentioned in section 4.1.1 illustrates the learning perfor-

mance of the four candidates (see Figure 4.3). DCGAN fails to capture the sinuous shape

of the channel and the point bar placement. Also, DCGAN suffers a severe mode collapse

problem that produces nearly the same realisations no matter how the input vector of the

generator changes (see the DCGAN column of Figure 4.3). WGAN and WGAN-GP learn

the elongated channel shape and place the point bar at the inner banks. However, their pat-

terns of the channel across the domain are less likely plausible and sometimes they only

create point bars on one side of the channel’s inner bank instead of two sides (see the blue

circle in Figure 4.3). PatchGAN achieves a more stable performance regarding the chan-

nel pattern and point bar placements, resembling fluvial channels meandering upstream to

downstream.

Then, the second evaluation compares the four GANs’ capability of reproducing low avul-

sion rate models in the same way (see Figure 4.4). DCGAN only learns the local spatial
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FIGURE 4.3: Random generations from different GANs trained with high avulsion rate
meandering models.

correlations between the three facies: channel, point bar and background shale. DCGAN

places the channel along the point bars’ margin while doesn’t reproduce the channel shape.

WGAN reproduces the channel shape but fails to capture the spatial relations fully. It still

tends to create point bars along one side of the channel’s inner bank, which is likely the

inner side of an object (see the blue circle in Figure 4.4). WGAN-GP performs similarly

to WGAN, and PatchGAN performs the best in learning the low avulsion rate models as

well.

FIGURE 4.4: Random generations from different GANs trained with low avulsion rate me-
andering models.

All four GAN variants experience difficulty in reproducing the more complex geological
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patterns from the process-based model, FLUMY. Those GANs’ realizations contain unre-

alistic features, even PatchGAN, summarised in Table 4.2. Although PatchGAN outper-

forms others in this comparison study, there are still some geologically unrealistic features

remaining. One critical unrealistic feature of PatchGAN is the ‘closed channel’ pattern

(see the red circle in Figure 4.4). FLUMY realisations contain some reasonable loop pat-

terns (see Figure 4.11 in later Section 4.2.3) while the ‘closed channel’ highlighted here

presents different features. The ‘closed channel’ here means a fluvial channel created by

GAN, which displays isolated circles/loops instead of a reasonable meandering character.

All four GAN variants suffer this problem to some degree in learning both high and low-

avulsion rate models, creating ‘closed channels’ or similar isolated circles with an even

worse representation of local features, which are likely a training difficulty caused by a

local minimum trap. So, the ‘closed channel’ issue is problematic for all four GAN vari-

ants but is a crucial challenge for PatchGAN because its discriminator provides feedback

based on the local information at the patches scale. Section 4.2.3 will discuss reducing

this unrealistic feature.

TABLE 4.2: Summary of the qualitative comparison for reproducing key geological fea-
tures and GANs stability.

GANs Name DCGAN WGAN WGAN-GP PatchGAN

Channel sinuous shape × ✓ ✓ ✓
‘Closed channel’ pattern ✓ ✓ ✓ ✓
Point bar aside channel ✓ ✓ ✓ ✓
Point bar on both sides of inner bank × × × ✓
Mode collapse ✓ × × ×

✓ denotes Yes. × denotes No.

Data size and complexity lead to GANs’ failure to capture the complex geometries of the

meandering fluvial channels and associated facies. This study trained GANs on higher

resolution 2D data containing 256×256 pixels compared to earlier successful applications

using 64 × 64 or 128 × 128 pixels images [Chan and Elsheikh, 2019, Song et al., 2021b],

making it hard for GANs to create bigger size images matching the patterns of the training

data without mode collapse. PatchGAN has a much lighter discriminator and focuses on

patterns in a smaller region instead of the whole image, reducing the learning stress of the

generator by narrowing down the size of patterns to be matched.
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On the other hand, the meandering fluvial models in GAN River-I have meandering chan-

nels with various shapes and asymmetric sinuosity, and non-constant point bar geome-

tries. Channels in earlier publications mostly have constant sinuosity and shape [Chan and

Elsheikh, 2019, Song et al., 2021b]. Though some publications set different channel sinu-

osity to create training datasets, the curvatures within a training image remain unchanged,

and the facies linearly transit from channel to levee, then to background [Song et al., 2021b,

Zhang et al., 2019b]. Channels in this study, however, have different curvatures within

the same channel, trigger meander cut-offs when maturely developed, and cross over each

other to formmore complex patterns. The increased data complexity gives GANs a sterner

test, resulting in all four GAN variants struggling to learn plausible geological patterns at

different levels of realism reproduction.

4.2 Fluvial GAN

This study uses the 7-Facies version of GANRiver-I to test GANs’ performance in creating

multi-facies meandering fluvial models. To the best of my knowledge, this training dataset

contains more facies than earlier publications, increasing the complexity by adding more

details to geobodies. In addition to the ‘closed channel’ issue mentioned in the last section,

applying GAN to multi-facies modelling introduces another issue, named ‘mislabelling’.

‘Mislabelling’ appears whenGANuses wrong encoded facies to create geobodies, drawing

a value belonging to another facies but numerically close to the encoded values of the

correct facies, for example, creating a muddy abandoned channel assigned with facies

whose encoded values are between mud plug and point bar, e.g. overbank, crevasse splay,

etc (see the upper red circles in Figure 4.6 e).

This section introduces Fluvial GAN, a further developed GANmodel, to reproduce multi-

facies meandering fluvial patterns created in various depositional settings. Using Patch-

GAN, the winner of our comparison study, as the baseline, Fluvial GAN has three specific

improvements: (1) an embedded One-Hot Encoder to treat facies as nominal data, (2) a

proposed Hybrid-discriminator to better capture fluvial patterns, and (3) a variant hinge

loss to avoid mode collapse. Both qualitative and quantitative methods compare Fluvial

GAN and two more standard cases in reproducing the geological features represented by

GANRiver-I. Fluvial GAN largely reduces the occurrence of the ‘mislabelling’ and ‘closed
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channel’ issues. This study employs UMAP (see section 3.2.2.2) to visualise the diversity

of generated realisations by comparing the ensemble with the training dataset in the UMAP

2D space. Fluvial GAN well covers the uncertainty displayed by UMAP projected GAN

River-I.

4.2.1 Problems of Applying Baseline to Multi-facies Modelling

As mentioned in Section 4.1.1, the PatchGANwith an improved loss function outperforms

others and therefore, becomes the baseline to multi-facies modelling. Data pre-processing

continues to use linear scaling, and PatchGAN settings remain the same as Table 4.1, ex-

cept for the optimiser (see Figure 4.5). This study selects AdamW [Loshchilov and Hutter,

2017] instead of ADAM as the optimiser because the standard Fluvial GANmodel in later

sections uses AdamW based on the comparative trial runs. Comparing the optimisers’ im-

pact on learning fluvial patterns is beyond the scope of this thesis as the exploration is not

exhaustive, and its impact is less significant than the improvements on the model architec-

ture. Even though the settings of the optimiser didn’t dominate GAN’s performance in this

case, this study still needs to keep the used optimiser consistent for the ablation studies of

further improvements. An ablation study infers a user-selected element’s contribution to

an artificial intelligence system by comparing the results with and without this component

while keeping other settings the same.

FIGURE 4.5: A schematic diagram of PatchGAN workflow for multi-facies modelling.

The results of the baseline present clear challenges of applying PatchGAN to simulate

fluvial geology (see Figure 4.6). Though most realisations show meandering shapes of
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the channel and associated facies, the reproduced meandering fluvial patterns have several

issues. The first problem is the facies models from the baseline are visually incomparable

to the image quality of its training dataset, showing indistinct shapes of facies. For instance,

the sand plug breaks up along the channel in GAN realisations (see Figure 4.6 b), while it

is unbroken in GAN River-I. The channel fills often do not present the proper meandering

shape (see Figure 4.6 e). Facies sometimes also follow implausible ordering; for example,

‘overbank’ often surrounds the mud plug facies when it should border on the point bar or

levee (see Figure 4.6 a). Those inaccurate patterns are the so-called ‘mislabelling’ in this

study. Some GAN generations show unrealistic features, e.g. placing levee facies on one

side of meander-belts (see Figure 4.6 d) or the channel or meander-belt forming an isolated

circle (see Figure 4.6 f). The latter pattern is the ‘closed channel’ issue mentioned earlier,

which is easy to spot, but apparently implausible.

FIGURE 4.6: 2D realisations from Baseline GAN. (a)(b)(c) Examples of GAN mimicking
high to low avulsion rate fluvial models. (d) An example of GAN creating discontinuous
channel shape and inappropriate facies transition. (e) An example of GAN realisation
with an apparent ‘mislabelling’ problem. (f) An example of GAN generating inaccurate

‘closed channel’ patterns.
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4.2.2 Appropriate Data Pre-processing for Categorical Data

One improvement on the baseline embeds the One-Hot Encoder, a data pre-processing

algorithm that transforms data from category to numeric, into the GAN framework to han-

dle the ‘mislabelling’ issue. One-Hot Encoder encodes the 2D training facies data to a

3D matrix that adds an extra dimension to indicate which facies exist at locations (see

section 2.3.1.1 for the details of One-Hot Encoder). To integrate the One-Hot Encoder,

SoftMax replaces Tanh as the last activation function of the generator whose output spec-

tral dimension is seven, equalling the total number of facies. SoftMax indicates the relative

probability of categories at locations (see section 2.3.1.2 for the details of SoftMax). This

change makes the generator’s output consistent with the result processed by the One-Hot

Encoder, avoiding the discriminator processing inputs with different sizes. The rest re-

mains the same as Baseline, including the training epoch.

GAN with the One-Hot Encoder produces more distinct individual geometries that are

visually comparable to FLUMY realisations (see Figure 4.7). The One-Hot Encoder sig-

nificantly improves GAN’s generation quality based on a visual comparison between the

Baselines with and without the embedded One-Hot Encoder. Sand and mud plug facies

filled in a channel now appear as unbroken meandering shapes (see Figure 4.7 a, 4.7 b,

4.7 c). Facies transitions become more accurate along the channel centreline shown in

GAN realisations (see Figure 4.7 a, 4.7 b, 4.7 c, 4.7 d). However, the ‘closed channel’

pattern still exists in many GAN realisations (see Figure 4.7 e, 4.7 f), meaning this is still

an unsolved problem through the assistance of the One-Hot Encoder.

A comparison between the Baselines with and without the embedded One-Hot Encoder

implies that the ‘mislabelling’ issue may result from inappropriate data pre-processing.

GAN realisations get visually more akin to FLUMY realisations after changing the data

pre-processing from linear mapping to the One-Hot Encoder; compare the results shown

in Figure 4.6 and Figure 4.7. Many Baseline GAN realisations have the ‘mislabelling’ is-

sue, displaying some facies in the other facies’ place, whose encoded values produced by

data pre-processing are close. Baseline GAN linearly scales a large number of facies (cat-

egories), leaving a small interval between encoded facies in continuous values, raising the

‘mislabelling’ problem. For instance, Baseline GAN inserts crevasse splay and overbank
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FIGURE 4.7: 2D realisations from Baseline GAN with One-Hot Encoder. (a)(b)(c) Good
examples of GAN mimicking high to low avulsion rate fluvial models. (d) An example of
GAN creating inaccurate facies transition. (e)(f) Examples of GAN generating inaccurate

‘closed channel’ patterns.

facies between the mud plug and other facies, e.g. point bar and levee (See Figure 4.6 a),

and creates the sand plug facies in the point bars’ place, resulting in a broken channel (see

Figure 4.6 d) or wrong channel geometries (see Figure 4.6 e).

The One-Hot Encoder is a more appropriate choice to process facies without rigorous

ordering for GAN learning. Though facies may obey an order following certain rules in

the process of integer encoding, e.g. ordinal encoding, one order is often inadequate to

describe the relationships between facies in all rock properties as they are non-linear. For

instance, sand plug facies has a larger grain size and higher permeability than mud plug

facies. In contrast, the channel lag has a larger grain size than sand plug facies while

sometimes is less permeable because of poor sorting or impermeable if well cemented

by carbonate [McKie and Audretsch, 2005]. Thus, unless there is a firm ordering, the

modeller should treat facies as order-independent categories (nominal data), which is the

idea of the One-Hot Encoder and what geostatistics has been doing for decades. Hence,

the One-Hot Encoder naturally suits better to handle multi-facies modelling, consistent

with the fact that GAN with the One-Hot Encoder has fewer ‘mislabelling’ issues than the

Baseline.
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4.2.3 Fluvial GAN Learns Meandering Patterns Better

This study designs a GAN variant with better stability for meandering fluvial facies mod-

elling, named the Fluvial GAN (see Figure 4.8). The new design addresses the identified

problems in previous sections: the ‘mislabelling’ and ‘closed channel’ issues. Fluvial

GAN uses the conventional GAN learning framework but has three unique improvements:

(i) a One-Hot Encoder to prevent the generator from drawing naturally ordered values to

facies without a natural order (please refer to section 4.2.2), (ii) a modified discriminator

structure named the Hybrid-discriminator, reducing ‘closed channel’ patterns’ occurrence

and (iii) an improved hinge loss with a zero-centred gradient penalty term to prevent mode

collapse, ensuring Fluvial GAN’s generations containing diverse geological patterns from

the GAN River-I (please refer to section 4.1.1).

FIGURE 4.8: A schematic diagram of Fluvial GAN training workflow. One-Hot Encoding
refers to the pre-processing of raw facies data using the One-Hot Encoder, which produces
a set of maps indicating the presence of facies at locations. The generator outputs are a
set of probability maps of facies. Argmax converts the probability maps to a facies reali-
sation by assigning the facies with the highest probability at locations. Hybrid D denotes
the Hybrid-discriminator composed of two convolutional neural networks-based classi-
fiers. Modified D input within the red dash-lined rectangle denotes an optional operation
to modify data before feeding it to the discriminator, which changes the number of prob-

ability maps used as the input of the discriminator.

The Hybrid-discriminator in Fluvial GAN is another improvement on the baseline GAN,

which modifies the architecture of the PatchGAN discriminator to prevent the generator

from creating geologically unrealistic features. Though having a similar idea of increas-

ing the discriminator’s receptive field as the multi-scale discriminator [Park et al., 2019,

Wang et al., 2018b], the Hybrid-discriminator captures different receptive fields by varying
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the convolutional layers’ dilation rates instead of directly resizing the input. The hyper-

parameters of the Hybrid-discriminator, e.g. the number of discriminators and the dilation

rate in each layer, presented in this study is a trial-and-error result, leaving the architec-

ture optimisation as future research. The Hybrid-discriminator in Fluvial GAN consists

of two PatchGAN discriminators with different dilation rate configurations that capture

the geological patterns of different sizes. One discriminator only contains standard con-

volutional layers, while the other has several dilated convolutional layers. Please refer to

section 2.3.1.2 for the overview of convolution and dilated convolution. Such a Hybrid-

discriminator structure is essential to introduce better reproduction of multi-scale mean-

dering patterns.

Therefore, Fluvial GAN’s model structure comprises a modified DCGAN generator and

two varied PatchGAN discriminators. Table 4.3 presents the details of the Fluvial GAN

generator. The two PatchGAN-based discriminators’ hyper-parameters are summarised

in Table 4.4 and 4.5, respectively. Following Park et al. [2019], both the generator and

the discriminator in Fluvial GAN use spectral normalisation to stabilise GAN training,

which is a weight normalisation algorithm applied to GANs’ learnable parameters (weight

values) [Miyato et al., 2018].

TABLE 4.3: Fluvial GAN Generator Architecture

Layer State size

Linear (128, 32768) (Batch size, 32768)
Reshape (Batch size, 512, 8, 8)
NN Block, Up sample (2) (Batch size, 512, 16, 16)
NN Block, Up sample (2) (Batch size, 256, 32, 32)
NN Block, Up sample (2) (Batch size, 128, 64, 64)
NN Block, Up sample (2) (Batch size, 64, 128, 128)
NN Block, Up sample (2) (Batch size, 32, 256, 256)
NN Block, 3X3Conv-7, SoftMax (Batch size, 7, 256, 256)

3X3Conv-7 denotes 3X3 convolutional layer with seven filters. NN Block refers to the neural networks
sequentially composed of a batch normalisation, a leaky ReLU, and a 3X3 convolutional layer.

Fluvial GAN has an optional process that modifies the discriminator’s inputs in spectral

dimension (the data science community often calls it ‘channel dimension’, but it is confus-

ing in this study) to introduce extra geological information of the sedimentary relationships

between facies into the discriminator (see theModifiedD input in Figure 4.8). This process
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TABLE 4.4: CNN-based PatchGAN Discriminator in Fluvial GAN Hybrid Discriminator

Layer Conv Parameters (kernel size, stride, dilation)

Conv-32, Leaky ReLU (4, 2, 1)
Conv-64, IN, Leaky ReLU (4, 2, 1)
Conv-128, IN, Leaky ReLU (4, 2, 1)
Conv-256, IN, Leaky ReLU (4, 1, 1)
Conv-1 (4, 1, 1)

IN denotes instance normalisation.

TABLE 4.5: Dilated CNN-based PatchGAN Discriminator in Fluvial GAN Hybrid Dis-
criminator

Layer Conv Parameters (kernel size, stride, dilation)

Conv-32, Leaky ReLU (4, 2, 1)
Conv-64, IN, Leaky ReLU (4, 2, 2)
Conv-128, IN, Leaky ReLU (4, 2, 2)
Conv-256, IN, Leaky ReLU (4, 1, 2)
Conv-1 (4, 1, 1)

IN denotes instance normalisation.

excludes the background-indicator layer, overbank facies, from the discriminator’s input

because background facies is unnecessary to present a particular shape and is a result of

other facies’ geometries instead. Then the rest six facies-indicator layers concatenate four

grouped facies layers (see Table 4.6), composing the modified inputs of the discrimina-

tor. Each grouped facies preserves the overall shape of a geo-body that contains several

original facies with different petrophysical properties. Each original facies can exist in

more than one grouped facies. Thus, the discriminator’s input has ten layers in the spec-

tral dimension equalling the total number of facies-indicators, including the six original

facies-indicator layers and the four grouped facies-indicator layers.

TABLE 4.6: Summary of the four grouped facies (geobodies) used as extra indicator layers

Grouped facies (Geobodies) Original facies from FLUMY

Channel deposits Sand plug, mud plug
Lateral accretion deposits Channel lag, point bar
Meander-belt deposits Channel lag, point bar, sand plug, mud plug
Levee deposits Crevasse splay, levee
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The training process of Fluvial GAN runs 200 epochs to learn the meandering fluvial

facies distribution from GAN River-I. The Fluvial GAN’s training process uses AdamW

[Loshchilov and Hutter, 2017] as the optimiser whose learning rate is 0.0002, and betas

values are 0.5 and 0.9. The training and testing of Fluvial GAN both use a single GPU,

RTX3090, to benchmark the speed. A single RTX3090 needs about 23 hours to train

Fluvial GAN for 200 epochs and can produce around 16000 facies models per minute using

a pre-trained Fluvial GAN. See Figure 4.9 for the curves of loss values during training.

FIGURE 4.9: Loss curves of Fluvial GAN during training.

Fluvial GAN performs better based on visual comparison with the training dataset and

by evaluation regarding geological realism (see Figure 4.10). Fluvial GAN reproduces

the facies geometries and transitions observed in GAN River-I and occurs ‘closed chan-

nel’ patterns around ten times fewer than the baseline and the one-hot encoder embedded

case. Like other GAN variants, the Fluvial GAN also creates artefacts and fails to learn

certain geological patterns, e.g. the channel-filled facies transition along the abandoned

channel, resulting from an intricate sediment transport mechanism in the abandoned chan-

nel affected by the active channel. Occasionally, facies models from Fluvial GAN suffer

the ‘gridding effect’ issue due to dilated convolution (see section 2.3.1.2 for the details),

displaying one or more facies with a gridding texture on another facies (see Figure 4.10

d). Some realisations from the Fluvial GAN present abandoned channels with frequent

changes in the channel-filled facies (sand plugs and mud plugs) downstream (see Figure
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4.10 e). This pattern does not exist in GAN River-I, where the sand plug facies transit to

mud plug facies only once after channel abandonment if the active channel isn’t across. In

rare cases, Fluvial GAN generates detached small objects with plausible local features (see

Figure 4.10 f), but when treated as part of the whole picture, they are artefacts of facies

models as they lack reasonable evidence of their existence, unlike the detached objects in

2D data from GAN River-I that has slices below or above it (see Figure 3.13).

FIGURE 4.10: 2D realizations from Fluvial GAN. (a)(b)(c) Good examples of GAN mim-
icking high to low avulsion rate fluvial models. (d) An example of GAN suffering the
‘gridding effect’. (e) An example of GAN changing channel fill facies frequently. (f) An

example of GAN-generating artefacts.

The ‘closed channel’ issue is the toughest and the most conspicuous pattern in GANs

generations, which is a geologically unrealistic feature. All three cases in this section

produce this kind of ‘closed channel’ pattern: the channel or meander-belt connected end-

to-end forms a detached circle (see Figures 4.6 f, 4.7 e, 4.7 f). The ‘closed channel’ here

is an inaccurate reproduction of plausible meandering fluvial patterns observed in GAN

River-I and may result in unreliable connectivity, which impacts the predictions of the

flow response and sweep efficiency from any dynamic simulations based on those facies

models.

FLUMY has several processes that result in some loop patterns, e.g. meander cut-offs and

multiple channels deposited in the same elevation while crossing each other (see Figure

91



4.11). However, those ‘closed channel’ patterns produced by GANs differ from the plau-

sible fluvial loops in GAN River-I. Those ‘closed channels’ disjoin the meander belt both

upstream and downstream, lacking supporting clues about how they form.

FIGURE 4.11: FLUMY simulations containing loop patterns.

The ‘closed channel’ issue may derive from the limitation of the convolutional layer’s

local receptive field since the ‘closed channel’ pattern is plausible locally but implausible

globally (see Figures 4.6 f, 4.7 e, 4.7 f). As mentioned in section 4.1.2, PatchGAN focuses

on learning texture-level structure within small regions in training data, making how to

avoid the ‘closed channel’ issue challenging. While other GAN variants in section 4.1.2

also suffer from this problem according to the comparison study (please refer to section

4.1.2 for the details). GANs learning is likely to stick in this sub-optimal state.

The idea behind the Hybrid-discriminator solution in Fluvial GAN is to broaden the dis-

criminator’s receptive field while not dramatically increasing the number of learnable pa-

rameters. Classical methods of expanding the receptive field, e.g. deeper architecture or

larger kernel size, lead to more learnable parameters and, consequently, raise the overfit-

ting risk. In those cases, the discriminator quickly finds a way to determine where its inputs

are from, real or fake data. In other words, the discriminator surpasses the generator and

no longer provides a useful response to improve the generator’s performance. Therefore,

Using dilation to expand the receptive field is a reasonable choice as the dilation doesn’t

increase the number of learnable parameters (please refer to section 2.3.1.2 for more de-

tails). As presented in Wang et al. [2018a], using dilated convolution can lead to a serious

‘gridding effect’ problem (see Figure 2.19). Thus, following the hybrid dilation rates idea

in Wang et al. [2018a], an extra GAN case uses different dilation rates in the discriminator
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of the baseline GANwith One-Hot Encoder to test the hybrid dilation rates discriminator’s

performance. However, the occurrence and level of the ‘gridding effect’ issue are still not

at an acceptable level (see Figure 4.12).

FIGURE 4.12: Examples of realisations suffering strong ‘gridding effect’ from a Fluvial
GAN variant that only uses a dilated convolution-based discriminator with a hybrid dila-

tion setting. This discriminator is the same one in Table 4.5.

The proposed Hybrid-discriminator decreases both the ‘closed channel’ and ‘gridding ef-

fect’ to a low occurrence but does not fully erase them. This study uses the proposed

occurrence-based score (see Equation 3.5) to evaluate Fluvial GAN regarding the ‘closed

channel’ problem based on 1,000 random generations, which is manually computed (see

Table 4.7). The score of the ‘closed channel’ occurrence reduces from 10% to about 1%

by using the Fluvial GAN design. The ‘gridding effect’ occurrence in Fluvial GAN real-

isations also decreases to about 2%, much lower than the occurrence score of the variant

that only has a dilated convolution-based discriminator, which is about 30%.

TABLE 4.7: Occurrence-based indicator of ‘closed channel’

Case ‘Closed channel’ Occurrence

Baseline 11.2%
Baseline with One-Hot Encoder 9.8%
Fluvial GAN 0.7%

4.2.4 Analysis of Fluvial GAN

This section evaluates Fluvial GAN’s performance qualitatively and quantitatively by ran-

domly generating 1,000 realisations. Like the quantitative analysis of GAN River-I, this

study uses the sand proportion and connectivity measures to evaluate the Fluvial GAN

simulated set and compares it with GAN River-I’s true subset in section 3.2.2.
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The first assessment plots the Fluvial GAN realisations and the ‘reference’ (1,600) true

subset of GAN River-I based on their sand connectivity against sand proportion to illus-

trate Fluvial GAN’s performance regarding these two measures. The red and blue dots,

representing the data from Fluvial GAN and GAN River-I, broadly overlap in Figure 4.13,

illustrating that the Fluvial GAN ensemble covers the ranges of sand proportion and con-

nectivity represented by the reference FLUMY ensemble. Table 4.8 recaps the statistics

of the two (Fluvial GAN set and the true subset) realisation ensembles’ sand proportion

and connectivity.

FIGURE 4.13: Plot of Fluvial GAN set’s Sand Connectivity against Proportion.

TABLE 4.8: Statistics of Fluvial GAN set’s Sand Connectivity and Proportion

Data Set Sand Proportion Sand Connectivity
Mean Variance Mean Variance

FLUMY Subset 0.19 0.005 0.62 0.049
Fluvial GAN 0.18 0.005 0.58 0.047

Then an associated evaluation calculates all 2D realisations’ sand connectivity probability

from the Fluvial GAN set vs the FLUMY training data set. Figure 4.14 is a connectivity
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probability plot comparing all realisations from the Fluvial GAN and the FLUMY subset.

Fluvial GAN shows a wide range of connectivity probability along lag distance (green

curves) that covers the uncertainty of connectivity probability represented by the FLUMY

set (red curves). To better compare the Fluvial GAN set and the FLUMY subset, Figure

4.14 uses lag box plots to indicate the 75%, medium and 25% cases of a realisation ensem-

ble. Both the mean values (solid line) and the box plots (dash-line) of the two probability

curve sets indicate the Fluvial GAN results well match the FLUMY subset curves (see the

plot on the right side of Figure 4.14).

FIGURE 4.14: Sand connectivity probability curves. Green curves are realisations from
Fluvial GAN. Red curves are realisations from the FLUMY training dataset. The solid
lines are mean values, and the black box and dash-lined boxes indicate 75%, medium, and

25% of the data sets.

The second assessment evaluates themodel diversity of the Fluvial GAN-simulated ensem-

ble to demonstrate that the Fluvial GAN successfully avoid mode collapse, which means it

can reproduce diverse types of geological patterns seen in GAN River-I. This assessment

uses the same UMAP mapper used to analyse GAN River-I (see section 3.2.2.2 for the

details) to visualise the ensemble realisations from Fluvial GAN in the same 2D metric

space [McInnes et al., 2018]. Each dot in the UMAP metric space represents a 2D facies

realisation (See Figure 4.15), providing a straightforward visual comparison of the model

diversity between the Fluvial GAN realisations set and the subset of GAN River-I.

For the convenience of checking which type of realisation resulted from different avulsion

rates exit, the whole Fluvial GAN sets (red dots) are respectively plotted into five columns

with different subsets of GAN River-I (blue dots) from avulsion rate groups one to five in

Table 3.3. The red and blue dots’ degree of overlap implies the level of Fluvial GAN (red)

replicating the GAN River-I (blue) in model diversity. Regarding what a mode collapse

case looks like in UMAP space, Figure 4.15 attaches a low diversity GAN result in the

first row as the reference. This mode collapse case results from the baseline with One-Hot
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Encoder while excluding the zero-centred gradient penalty term in the loss function. After

training, this mode collapse case randomly simulates 1,000 realisations as the comparison

set to Fluvial GAN set. When a GAN suffers mode collapse, the GAN-simulated set (the

first row of Figure 4.15) references the level of data spread in the UMAPmetric space. Red

dots cover some regions of blue dots but are absent inmany areas, particularly in the third to

fifth columns in Figure 4.15, representing meandering fluvial patterns resulting from low

avulsion rate settings. In contrast, the Fluvial GAN set (the second row of Figure 4.15)

broadly spreads and almost reaches every place the blue dots exited in the UMAP metric

space. This high overlap demonstrates Fluvial GAN can produce diverse types of fluvial

patterns represented by GAN River-I, and therefore, doesn’t have a serious mode collapse

issue.

FIGURE 4.15: Diversity plot of FLUMY realisations against GANs realisations. Blue
points are FLUMY realisations. Red points are GAN realisations. FLUMY_G1 to
FLUMY_G5 denote FLUMY realisations with different avulsion rates shown in Table 3.3

from groups 1 to 5.

A further study analyses whether Fluvial GAN generations gathering in the same place as

FLUMY realisations resemble them by visualising one FLUMY realisation and five Fluvial

GAN generations nearby it in the UMAPmetric space. Figure 4.16 displays an example of

the visual comparison between a FLUMY realisation and its five nearest neighbours from

Fluvial GAN in the UMAPmetric space. Here the distance measured in the UMAPmetric

space is Euclidean, while the measured similarity between facies realisations is often non-

Euclidean [Caers, 2011]. Therefore, the five Fluvial GAN realisations in Figure 4.16 look

different from the reference realisation from GAN River-I, but they all contain a wide

meander-belt in the middle of the field. The five facies models from Fluvial GAN present
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different fluvial patterns with diverse shapes, various sinuosities, and different channel-

filled facies, representing a range of geological uncertainty.

FIGURE 4.16: An example of five nearest neighbours to a FLUMY realisation in UMAP
2D space. FLUMY_G2_2 denotes a FLUMY realisation from a 3D simulation with the

avulsion rate in Group 2 of Table 3.3.

The third evaluation examines if Fluvial GAN can learn the variability of fluvial patterns in

a FLUMY 3D succession by searching and optimising Fluvial GAN realisations to match

the slices of a given sequential succession shown in Figure 3.11. This study relies on min-

imising Fluvial GAN generations and the target FLUMY slice by searching and optimising

the values in the latent vector of Fluvial GAN (see Figure 4.17). Fluvial GAN generations

in Figure 4.17 highly resemble their FLUMY counterparts concerning the main meander

belt in the middle of the field. These results illustrate Fluvial GAN can reproduce diverse

meandering fluvial patterns, reflecting the river evolution modelled by FLUMY. Unfor-

tunately, the gradient-based optimiser fails to match the thin channels because of a local

minimum trap. Thus, the Fluvial GAN-simulated slices don’t capture the new channel’s

initialisation in Figure 4.17 as it is thin.

The fourth appraisal investigates if the Fluvial GAN’s latent space represents facies models

properly using two random vectors for an interpolation test. This test collects the interpo-

lated realisations by linearly changing the latent vector from vector one to vector two as the

Fluvial GAN’s input (see Figure 4.18). All facies models in Figure 4.18 are geologically
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FIGURE 4.17: Optimised Fluvial GAN realisations resemble FLUMY realisations by
searching at its latent vector.

plausible and resemble slices from GAN River-I, which proves the latent space of Flu-

vial GAN has a smooth transition. The facies model gradually shifts from less developed

to mature meandering channels, indicating that Fluvial GAN successfully learns relevant

representations of meandering fluvial geology [Radford et al., 2015].

FIGURE 4.18: Interpolation between two random vectors.

According to the assessments above, Fluvial GAN learns diverse patterns of meandering

fluvial geology, demonstrating GANs, with a tuned design, can handle the challenge of

multi-facies meandering fluvial modelling. Fluvial GAN reproduces the fluvial channels’
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meandering shapes and the spatial relationship between the channels and lateral accre-

tion packages, e.g. point bars and channel lags. Most facies models from Fluvial GAN

resemble FLUMY realisations and place the levee facies properly along the meander belts.

However, Fluvial GAN still has several unsolved problems, resulting in a geologically

inaccurate facies model. First, Fluvial GAN occasionally creates facies models with a clear

‘gridding effect’, about 2% (see Figure 4.10 d). Second, some channels in Fluvial GAN

generations frequently change the filled deposits within the same channel (see Figure 4.10

e). Though this patternmay occur in nature or due to the FLUMY’s discretisation program,

no realisation has a single channel with a facies transition back and forth repeatedly in GAN

River-I. The third issue is the kind of artefact shown in Figure 4.10 f that has a channel or

meander belt’s local features while detached and unconnected to any laterally consistent

set of geobodies. GANRiver-I contains some detached geobodies (see Figure 3.13) as each

training data is a single slice of a FLUMY 3D simulation (please refer to section 3.2.3 for

details). Thus, the artefact may as a result of the 2D training data containing detached

geobodies shown to Fluvial GAN.

This study only tested the Fluvial GAN in reproducing low NTG meandering fluvial mod-

els from FLUMY for an easier analysis of GAN performance visually and using connectiv-

ity. The generations’ quality may differ for facies models with high NTG, different fluvial

systems, e.g. braided and anastomosing, or even other sedimentary environments com-

pletely. The question of how to transfer this approach to a different depositional system is

beyond this work and can be seen as a further development. Such further development may

require bespoke GAN optimisation for a particular geological system. Nevertheless, many

original modifications, e.g. embedding One-Hot Encoder, introduced in Fluvial GAN are

generic for multi-facies modelling.

Limited to the time and computing resources available, this study does not explore many

other recent techniques that may help improve the GAN generation quality. For exam-

ple, Zhang et al. [2019a] applied the self-attention mechanism to the convolutional neural

network-based GAN, called SAGAN, helping capture long-range dependency across the

input regions. Karras et al. [2019] proposed a style-based generator (StyleGAN) based on

a conditional normalisation, adaptive instance normalization (AdaIN), to help with under-

standing and disentangling the latent vector’s variation, which better separates the global
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features from local features (stochastic variation). The StyleGAN is trained in a progres-

sive growing way [Karras et al., 2017], helping improve the fidelity of high-resolution

image synthesis [Karras et al., 2019].

4.3 Summary of Chapter 4

This chapter presented the research route of the Fluvial GAN model for reproducing 2D

realisations from GAN River-I. Commencing from a comparison study between four pop-

ular GAN variants, I decided to use the PatchGAN with a gradient-penalty term to prevent

mode collapse issue as the baseline for the multi-facies modelling of meandering fluvial

geology. Due to the data complexity regarding the multi-facies meandering fluvial pat-

terns, PatchGAN realisations display some undesired features that are clearly poor repro-

ductions of the GAN River-I, including the ‘mislabelling’ (noisy texture) and ‘close chan-

nel’ (detached loops) issues. By embedding the One-Hot Encoder into the baseline, the

boundary between facies in the GAN-simulated realisations becomes visually as recog-

nisable as its training data because the One-Hot Encoder suits to handle nominal data

(categorical variable without intrinsic ordering). Then, I proposed a Hybrid-discriminator

based on PatchGAN discriminator architecture and the hybrid dilation convolutional neu-

ral network, which significantly decreases the occurrence of the ‘closed channel’ pattern

by around one magnitude. Counting the baseline’s improvement on the PatchGAN’s loss

function, I made three enhancements to allow Fluvial GAN to learn diverse multi-facies

meandering fluvial patterns from GAN River-I.
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Chapter 5

Conditional GAN for Unconditional 3D
Facies Modelling

This chapter proposes an iterative approach to creating 3D facies models using condi-

tional generative adversarial networks (conditional GANs), which enables the modellers

to define the reservoir thickness/the number of layers/slices. This novel conditional GAN

framework learns to build 3D meandering fluvial facies models slice by slice from bottom

to top, mimicking a purely aggrading depositional process. This approach conditions each

new slice to the one below, making the reconstructed 3D succession geologically consis-

tent vertically. The conditional GAN in this framework only needs to process 2D data,

making it less computationally costly than the geological models used for training and 3D

convolution-based GANs that use entire 3D facies models as inputs.

5.1 Challenges of Using GANs to Learn 3D Models

Training GANs to reproduce 3D geological models is still challenging, particularly for

large meandering fluvial systems with complex facies transitions. Unlike GAN appli-

cations for 2D facies modelling, fewer pioneering papers focused on tackling 3D facies

modelling using 3D convolutional neural network-based GANs [Laloy et al., 2018, Song

et al., 2022, Yang et al., 2022, Zhang et al., 2019b]. Even though their training datasets

are simpler geology than GAN River-I, the 3D convolutional neural network-based GANs
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still had a hard time reproducing the 3D samples, which researchers spent great efforts

to tune their GAN models to a specific case [Laloy et al., 2018, Song et al., 2022, Yang

et al., 2022, Zhang et al., 2019b]. This section broadly analyses the challenges of GAN

for 3D reservoir facies modelling and the drawbacks of existing 3D convolutional neural

network-based GAN applications.

The first challenge for GAN-based 3D reservoir facies modelling is the heavy computa-

tional burden raised by 3D training data. Previous papers applied GANs to reproduce

3D facies models by directly using the entire 3D data as the inputs in the GAN training

pipeline [Laloy et al., 2018, Song et al., 2022, Zhang et al., 2019b]. The 3D data’s spa-

tial size is much more voluminous (regarding the number of pixels/elements) than the 2D

images used in other 2DGAN cases, making it difficult for GAN generations to match

the more complicated 3D geological patterns in the training dataset. This volume (refer-

ring to the number of pixels/voxels) may grow further if the modellers use advanced data

transformation algorithms to handle multiple facies modelling. For example, Fluvial GAN

uses the One-Hot Encoder to convert the facies from categories to numeric data, expand-

ing the data volume several times that equal the number of facies. The data expansion

raised by the One-Hot-Encoder further exacerbates the difficulties in pattern representa-

tion. Regarding the GAN model structure for processing 3D data, the kernel used for 3D

convolution commonly has a larger spatial size than in 2D convolution since it contains

three spatial dimensions instead of two. For instance, a 2D convolutional kernel whose

spatial size is 3 × 3 has nine learnable parameters. However, when extending this kernel

to do 3D convolution, its spatial size grows to 3 × 3 × 𝑧, where 𝑧 denotes a constant value

that equals the kernel’s spatial size in the z-dimension, increasing the number of learn-

able parameters to 9× 𝑧. Thus, the 3D convolutional neural network-based GANs contain

more learnable parameters, which require more CPU/GPU memory room and computa-

tion time. The gradient-based optimisation in those heavy neural networks also becomes

unstable and even fails to converge [Brock et al., 2018].

One way of helping 3D convolutional neural network-based GANs to learn 3D geological

patterns better is using conditioning data to provide information about facies’ spatial ar-

rangements that maintain geological consistency of vertical depositional succession. Yang

et al. [2022] proposed a conditional GAN approach that reconstructs 3D facies models
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from 2D cross-sections. Yang et al. [2022] extracted cross-sections (2D cross-slices of

facies realisations) from the 3D training dataset. Then, they use 2D cross-sections as the

conditioning data to constrain GAN’s generations of the 3D volume. The conditioning data

helped GANs produce 3D facies models matching the geological patterns of the reference

data. However, the conditional GAN model presented in Yang et al. [2022] still needs to

use 3D data as the input (3D cubes with known values in the cross-sections). Therefore, the

computational issues caused by the heavy model (many learnable parameters) mentioned

earlier remain unsolved.

The second challenge is that it is hard to reuse a pre-trained GAN for fluvial (or other sed-

imentary environments) modelling to a different-sized reservoir with similar sedimentary

settings unless re-training partial layers of the generator or changing the (input) latent vec-

tor size if the generator is a fully deep convolutional neural network model. Preparing the

dataset and training the model are two time-consuming processes of deep learning-based

applications. Thus, reusing the pre-trained model promotes the GAN-based reservoir fa-

cies modelling tools frommodelling one reservoir to others with the same depositional en-

vironment. For GANs containing dense neural network layers [Chan and Elsheikh, 2019],

their output size is the same as their training data. Chan and Elsheikh [2019] presented a

way of reusing a pre-trained generator to simulate larger 2D images by extending its la-

tent vector and corresponding parameters. For GANs without dense neural network layers

[Laloy et al., 2018, Song et al., 2022], the output size of the generator can be different from

its training data, but only by keeping a constant magnification to the latent vector in each

spatial direction. Both cases limit the application of pre-trained GANs to other reservoirs

with a similar sedimentary environment but different aspect ratios and sizes.

5.2 Fluvial GAN 3D

This section introduces a conditional GAN-based method for 3D reservoir facies mod-

elling, allowing users to define the reservoir thickness and tune the 3D pattern mimicking

the impact of different avulsion rates in a purely aggrading fluvial system. The two features

highlighted here enable the modellers to reuse the pre-trained conditional GAN to model

reservoirs with similar sedimentary settings but different thicknesses. As the conditional

GAN-based method reconstructs 3D cubes layer by layer, the modellers can set the number
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of layers (each 1 meter thick) required in the target reservoir. Also, this approach allows

the users to control the spatial correlation strength between reservoir layers, yielding dif-

ferent 3D geological patterns. Therefore, the modellers can adjust the types of simulated

sand-body based on their understanding of the target purely aggrading meandering fluvial

reservoirs’ scenarios.

The reconstruction framework contains one conditional GAN-based model and two pro-

posed training enhancements to improve the pre-trained conditional GAN’s performance

in reconstruction:

1) A conditional GAN-based model extends the Fluvial GAN into 3D reconstruction,

named FluvialGAN_3DR, which creates upper-slices conditioned to given lower-

slices using the SPADE Generator.

2) The multi-step enhancement sets up multiple schedules that train the conditional

GAN to predict the slice different meters/layers above the given slice in every train-

ing iteration, preventing the predicted upper slices from gradually losing realism.

3) The conditioning data decay enhancement produces a biased lower slice as the con-

ditioning data by summing all slices below the current target (including the base

slice) in a decay mechanism.

Following the ablation study, this section first compares three cases of FluvialGAN_3DR

with or without one or both proposed training enhancements above to demonstrate the two

training enhancements’ effects. The three cases have the same settings of model architec-

ture but different training enhancements (see Table 5.1). Two ablation studies composed

of the three cases (Case 1 VS Case 2 and Case 2 VS FluvialGAN_3DR) investigate the

effect of the multi-step and conditioning data decay, respectively. After training, two ways

of initiating the base slice for 3D reconstruction assess the performance of the three cases.

One takes a 2D realisation from the GAN River-I dataset as the base slice for the 3D re-

construction. The other uses a pre-trained Fluvial GAN generator to randomly create 100

facies realisation as the test set to test the 3D reconstruction’s performance.

The conditioning data decay enhancement introduces a hyper-parameter called the avul-

sion rate factor, 𝑁𝑎𝑣, heuristically correlated to the avulsion rate group labels in GAN
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TABLE 5.1: Cases in the ablation study

GAN Cases Multi-step enhancement Conditioning data decay enhancement

Case 1 × ×
Case 2 ✓ ×
FluvialGAN_3DR ✓ ✓

✓ denotes Yes. × denotes No.

River-I (see Table 3.3) to control the spatial correlation strength between simulated slices.

To explore the effect of the 𝑁𝑎𝑣 on the FluvialGAN_3DR, two further studies apply differ-

ent settings of 𝑁𝑎𝑣 in training and testing stages by decoupling the 𝑁𝑎𝑣 and the label of the

avulsion rate group in GAN River-I. The first study fixes 𝑁𝑎𝑣 value of FluvialGAN_3DR

to two extreme values, called the high avulsion rate variant and the low avulsion rate vari-

ant, at both training and testing stages to investigate if a constant 𝑁𝑎𝑣 works as well (see

Table 5.2). This experiment uses the same base slice set used to test FluvialGAN_3DR to

assess the performance of the two variants. The second one varies 𝑁𝑎𝑣 values of the 3D

reconstruction program at the testing stage to study the impact of 𝑁𝑎𝑣 on the 3D samples’

geological patterns.

TABLE 5.2: Summary of the 𝑁𝑎𝑣 values in different FluvialGAN_3DR cases

GAN Cases 𝑁𝑎𝑣 in train 𝑁𝑎𝑣 in test (study 1) 𝑁𝑎𝑣 in test (study 2)

High avulsion rate variant 1 1 5
Low avulsion rate variant 5 5 1
Standard FluvialGAN_3DR [1,5] [1,5] 1 and 5

This study uses both quantitative and qualitativemethods to analyse the results, as quantita-

tive measures are less subjective, but qualitative interpretation often conveys information

about highly complex patterns that are hard to quantify. The qualitative analysis relies

on visual interpretations of the GAN-simulated results by slicing horizontal and vertical

sections. The quantitative indicators are sand proportion and connectivity in 3D. As the

NTG of the training data is about 0.2, the 3D sand connectivity bears a big uncertainty. If

Fluvial GAN 3D successfully captures the sand proportion range of the training dataset,

the connectivity uncertainty in Fluvial GAN 3D generations can be another indicator for

performance evaluation by comparing the cascade zones between the training dataset and

GAN-simulated ensembles. The cascade zone quantifies how well the GAN reconstructed
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3D facies models ensemble represents geological uncertainty across the ensemble subject

to sedimentary uncertainty in the avulsion rate.

5.2.1 Fluvial GAN 3D Reconstruction Framework

The FluvialGAN_3DR’s training workflow uses a similar configuration to Fluvial GAN

while containing an extra data pre-processing, replacing the deep convolutional generator

with the SPADEgenerator (please refer to Section 2.3.3.3 for details of SPADE and SPADE

generator) to generate conditional realisations and changing the centre value of the gradient

penalty from zero to one (see Figure 5.1). As for the use of the centre values in the gradient

penalty calculation, please refer to Section 4.1.1 for the details.

FIGURE 5.1: The workflow of training Fluvial GAN 3D reconstruction model. Single pair
refers to the pair data containing a 2D realisation and the realisation one meter above it.
The plus sign denotes vertically concatenating the two 2D realisations before feeding into
the discriminator. One-Hot Encoding refers to using the One-Hot Encoder to pre-process
data. CNN is short for convolutional neural networks. Patch D refers to the PatchGAN
discriminator. The loss function is an improved version of hinge loss by adding the one-
centred gradient penalty term. One-Hot Encoder, Hybrid-discriminator and the improved

loss function are all from Fluvial GAN.

Regarding the data pre-processing, FluvialGAN_3DR needs to use data pairs that each

training data pair contains two overlaying 2D horizontal slices throughout the reservoir

instead of single images as the input for the discriminator. The two slices in each data pair

are the succeeding layers, which one comes above the other with a one-meter interval in

this study. In the data pair, the lower slice is the conditioning data, and the upper slice

is the target conditioned on the slice below. Later implementations with the conditioning
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data decay enhancement compute the conditioning data differently but also use the data

pair by concatenating the conditioning data and the prediction target as the discriminator’s

input. For short, this study calls the conditioning data the ’lower slice’ and the target

’upper slice’ at each training or testing iteration. FluvialGAN_3DR takes pair data as the

discriminator’s input because all 2D slices from the GAN River-I dataset can present as

the lower slice and upper slice in the data pair during training. If the discriminator uses

single images as the input, the generator will only duplicate the lower-slice data given as

the conditioning data as its generation output to fool the discriminator successfully, failing

the conditional GAN to predict the target (the upper-slice data).

The data pre-processing module pairs every two 2D slices, one 2D slice and the slice one

meter above it, whose index value difference is ten, from GAN River-I into a data pair for-

mat as the FluvialGAN_3DR’s training dataset. GAN River-I contains 16,000 slices from

25 3D facies realisations with 64 meters thick (640 0.1 meters thick layers) covering a

range of uncertainty across the change of avulsion rate. While this training dataset volume

is 14250 training data in the format of data pairs because the multi-step training enhance-

ment (see more details in Section 5.2.2) requires more slices further above the base slice

(7 meters/70 index values), resulting in the reduction of usable slices in the GAN River-I

dataset.

FluvialGAN_3DR’s model architecture is similar to the Fluvial GAN. The architectures of

FluvialGAN_3DR’s generator, SPADE generator, and discriminator, Hybrid discriminator

(composed of two PatchGAN-based discriminators), are summarised in Table 5.3, Table

4.4 and 4.5, respectively.

The training process runs 50 epochs using the ADAM optimiser [Kingma and Ba, 2014]

to update the generator and the discriminator in turn. The learning rate is 0.0002, and the

values of betas are 0 and 0.9, respectively, in the ADAM optimiser.

Reproducing the meandering facies realisations in GANRiver-I requires a pre-trained Flu-

vial GAN generator and a pre-trained FluvialGAN_3DR SPADE generator. The recon-

struction program initialises a base slice as the pre-trained SPADE generator’s condition-

ing data to simulate its upper slice and then replaces it with the simulated upper slice as the

conditioning data for the next upper slice’s prediction till reaching the required number of
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TABLE 5.3: SPADE Generator Architecture

Layer State size

Linear (128, 32768) (Batch size, 32768)
Reshape (Batch size, 512, 8, 8)
SPADEResBlk, Up sample (2) (Batch size, 512, 16, 16)
SPADEResBlk, Up sample (2) (Batch size, 256, 32, 32)
SPADEResBlk, Up sample (2) (Batch size, 128, 64, 64)
SPADEResBlk, Up sample (2) (Batch size, 64, 128, 128)
SPADEResBlk, Up sample (2) (Batch size, 32, 256, 256)
SPADEResBlk, 3X3Conv-7, SoftMax (Batch size, 7, 256, 256)

3X3Conv-7 denotes 3X3 convolutional layer with seven filters

slices/meters (see Figure 5.2). The initial base slice of this reconstruction program can be

alternatively from a pre-trained Fluvial GANor an arbitrary 2D training data from theGAN

River-I dataset. Then the users need to assign values for two parameters in this reconstruc-

tion program: the first one is the number of slices reconstructed, which is essential to gain

the flexibility for the conditional GAN to reconstruct the reservoir of arbitrary thickness,

and the second one, named the avulsion rate factor 𝑁𝑎𝑣, which is optional but more related

to the geological uncertainty associated with avulsion, biasing the correlation strength be-

tween the current target and earlier simulated slices below it. The following sections will

introduce those two parameters in detail.

FIGURE 5.2: The workflow of 3D reconstruction process after training. The Lower Layer
refers to the conditioning lower-slice data used in the SPADE generator. The Upper Layer

is the generated upper slice from the pre-trained SPADE generator.
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5.2.2 Multi-step Training Enhancement

The multi-step training enhancement incorporates the reconstruction process into the con-

ditional GAN training by setting up multiple prediction targets (steps) at each training

iteration. This enhancement has two hyper-parameters, the reconstruction step and the re-

construction iteration in each step. The reconstruction step determines the number/times

of reconstructions carried out at each training iteration of the training dataset looping.

Each reconstruction defines a reconstruction iteration that controls how many slices above

the base slice will be calculated iteratively. The reconstruction process during training

remains the same in the testing stage, which uses the conditional generator to predict the

upper slice conditioned on a given lower slice and then takes the generated upper slice

as the new conditioning data for the next upper slice’s prediction. Each step updates the

generator and the discriminator in turn. As the input data pair for the discriminator con-

sists of the conditioning data and the prediction target, the fake and real data pairs have

different lower slices (conditioning data) except for the first step, where reconstruction it-

eration is one (see Figure 5.3). In each step, the SPADE generator keeps using the upper

slice as the new lower slice to create the next upper slice until it reaches the number of

reconstruction slices required. The latest lower (conditioning data) and upper (prediction

target) slices comprise the fake data pair as the discriminator’s input during training shown

in Figure 5.1. Regarding the real data pair, the data pre-processing module must fetch the

corresponding lower and upper slices from the training dataset according to the value of

reconstruction iterations at the current reconstruction step. The rest are the same as the

previous framework shown in Figure 5.1.

Themulti-step training framework opens a further question of optimising its hyper-parameters:

the number of steps and the reconstruction iterations at each step. This study achieved a sta-

ble version based on a trial and error and left the theoretical hyper-parameter optimisation

for future studies. The number of steps is four in this training program, which processes

four times in each iteration for each batch of the data with reinitialised input vectors. The

reconstruction iterations (the number of slices reconstructed) in the four steps sequentially

are one, three, five and seven.
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FIGURE 5.3: A schematic diagram of the multi-step training enhancement. Any two neigh-
bouring slices with a one-meter interval from the training data can compose a real data

pair.

The first ablation study compares Cases 1 and 2 by picking the same slices from the GAN

River-I dataset as the base slice for the reconstruction. Initially, Case 1 and Case 2 can pro-

duce plausible upper slices. However, The upper slices produced by Case 1 start gradually

losing geological realism with the reconstruction continuing to build slices upwards (see

Figure 5.4 a). The reconstructed slices barely present a big chunk of sand-bodies (point

bars) mixed with broken sand and mud plugs. In contrast, reconstructed realisations from

Case 2 still show plausible meandering channels and appropriate point bars placements at

the channels’ inner banks, though the overall image quality is visually not as good as GAN

River-I or Fluvial GAN’s realisations (see Figure 5.4 b).

This ablation study proves that the multi-step enhancement significantly improves the per-

formance of the conditional GAN framework. Based on visual interpretations, the upper

slices (above the 10th) generated by Case 2 are obviously more plausible regarding the ge-

ological realism than those from Case 1, which doesn’t need quantitative scores to verify

this argument. To freely define the reservoir thickness (number of layers) when build-

ing the 3D facies models, preserving geological realism is essential in the reconstruction

process, which warrants using the multi-step training enhancement.
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FIGURE 5.4: Comparison of meandering patterns between Case 1 and Case 2. (a) is Case
1, and (b) is Case 2.

Compared to Case 1, Case 2 implicitly involves the generation history in predicting the new

upper slice. Case 1 fully ignores the impact of the generation history and only uses the

latest generation to predict the next upper slice. This leads Case 1 to forget history, exactly

what the assumption of the Markovian process is that 𝑋𝑡+1 depends on 𝑋𝑡 [Gagniuc, 2017].

Instead, Case 2 uses the discriminator to penalise the generated upper slices in pair that

are further above the base slice. In this way, Case 2 incorporates the history into the 3D

reconstruction sequentially throughout the conditional generator. However, the conditional

GAN in Case 2 is not trained in a recurrent way, which means the current generation

and the input end (SPADE’s input) of the next generation are directly connected. Instead,

the current generation is disconnected by detaching the gradients before using the current

generation as the SPADE’s input for the next generation. This choice is because of the

GPU memory limitation. Thus, Case 2 doesn’t explicitly involve the generation history in

its prediction, as it still only uses the latest generation as the conditioning data.

5.2.3 Conditioning Data Decay Training Enhancement

The second conditional GAN training enhancement adds earlier simulated slices (genera-

tion history) into the conditioning data (the lower slices) with a decay mechanism to predict

the next upper slice (target), named the conditioning data decay enhancement. This decay

mechanismmimics the gradient-based optimisers with the moment mechanism containing

a decay parameter [Kingma and Ba, 2014, Qian, 1999]. The real data pair’s lower slice is
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an exponentially decayed mean of slices between the base slice and the latest lower slice,

where those slices are continuous values and no longer treated as one-hot encoded indica-

tor variables. The lower slice is the conditioning data instead of the facies indicator map.

This lower slice is calculated by Equation 5.1

𝑐 =
𝑁𝑖𝑡𝑒𝑟−1∑
𝑖=1

0.1𝑁𝑎𝑣 · 𝑐 + (1 − 0.1) · 𝑁𝑎𝑣 · 𝑥𝑖 (5.1)

where 𝑐 is the lower layer, initialised as 𝑥0 (base layer). 𝑥 refers to the real data, 𝑖 de-

notes the layer index of real data, 𝑁𝑖𝑡𝑒𝑟 is the number of total reconstruction iterations at

the current reconstruction step, and 𝑁𝑎𝑣 is the avulsion rate factor. The avulsion rate fac-

tor, 𝑁𝑎𝑣, equals the avulsion rate group number in GAN River-I, heuristically, to impact

the correlation strength between slices in the standard configuration of FluvialGAN_3DR.

Therefore, the value of 𝑁𝑎𝑣 is between 1 and 5; a smaller valuemeans a higher avulsion rate

and vice verse. By coupling the 𝑁𝑎𝑣 value to the avulsion rate group, the decay mechanism

in this training enhancement imitates the spatial correlation between layers in a meander-

ing fluvial reservoir. A high avulsion rate leads to the river moving its channel quickly

to a different zone of the modelled field. Thus, one layer becomes less likely to have a

strong spatial correlation to those layers further below it if the reservoir results from a high

avulsion rate purely aggrading depositional setting.

Calculating the fake pair must involve the conditioning data decay mechanism in the multi-

step training framework. The algorithm 1 presents the pseudo-code of implementing the

conditioning data decay enhancement in the multi-step training framework. The repeated

times 𝑡 denotes to the total reconstruction iterations at the current reconstruction step, and

the input vector 𝑧 remains the same value within each reconstruction step for simplicity.

Indeed, the input vector can vary during training or testing, like as the ‘seed’ value in

a stochastic process, resulting in different realisations. However, the question about the

impact of changing the input vector of the conditional generator in reconstruction is beyond

this study’s scope. Thus, all cases in this chapter don’t change the value of the input vector

for both the pre-trained Fluvial GAN generator and SPADE-based conditional generator

when simulating a single 3D facies model.
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Algorithm 1: Multi-step training enhancement with conditioning data decay
Input: input vector 𝑧, repeated times 𝑡, avulsion rate factor 𝑁𝑎𝑣, the generator 𝐺 (·),
base slice 𝑥0

if 𝑡 = 1 then
𝑐 ← 𝑥0;
𝑥𝑡 ← 𝐺 (𝑧, 𝑐);

else
𝑐 ← 𝑥0;
𝑥𝑡 ← 𝐺 (𝑧, 𝑐);
for 𝑖 = 1, ..., 𝑡 do
𝑐 ← 0.1𝑁𝑎𝑣 · 𝑐 + (1 − 0.1) · 𝑁𝑎𝑣 · 𝑥𝑡 ;
𝑥𝑡 ← 𝐺 (𝑧, 𝑐);

end for
end if

Output: synthesis data 𝑥𝑡 , accumulated synthesis condition 𝑐

This second ablation study quantitatively compares the performance of Case 2 and Fluvial-

GAN_3DR to investigate the effect of the conditioning data decay enhancement by creat-

ing 100 3D realisations with 32 meters/slices (1 base slice and 31 reconstructed slices). A

pre-trained Fluvial GAN generator simulates a test set of base slices and connects to the

reconstruction program to work as the 3D facies model simulator, Fluvial GAN 3D. This

study uses the same set of input vectors for the two 3D facies model simulators (Case 2-

based and FluvialGAN_3DR-based) to avoid introducing bias from different input vector

initialisation. The avulsion rate group labels distribute evenly in the training dataset, and

therefore, FluvialGAN_3DR assigns 𝑁𝑎𝑣 values to 1 to 5 evenly during training. So, this

study changes 𝑁𝑎𝑣 values every 20 samples commencing from 1 to 5 in the reconstruction

process (testing stage) of FluvialGAN_3DR. The following two sections, section 5.2.4 and

5.2.5, will further investigate the effect of the avulsion rate factor. The sand proportion and

connectivity are the two quantitative measures to plot GAN realisations versus reference

realisations from GAN River-I in this study.

The 3D facies realisations from FluvialGAN_3DR cover ranges of sand proportion and

connectivity much wider than the ensemble from Case 2. This comparative result demon-

strates the conditioning data decay enhancement significantly improves the conditional

GAN-based 3D reconstruction’s performance (see Figure 5.5). The FluvialGAN_3DR
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generations show both low and high connectivity, covering the uncertainty in the GAN-

River-I dataset. Given the same initialisation, realisations from Case 2 are mainly high

connectivity models. The Case 2 plot’s Cascade zone is noticeably smaller, illustrating it

fails to cover the connectivity uncertainty represented by the GAN-River-I dataset. Thus,

with the assistance of the conditioning data decay enhancement, the SPADE-based condi-

tional generator learns better than without it.

FIGURE 5.5: Comparison of sand connectivity against proportion plots between Case 2
and FluvialGAN_3DR. The 𝑁𝑎𝑣 value of the FluvialGAN_3DR ranges from 1 to 5 during
training. (a) is Case 2, and (b) is the standard FluvialGAN_3DR with varying 𝑁𝑎𝑣 during
the reconstruction process. The blue dots are the reference samples from FLUMY. The

red cross markers are samples from GANs.

A further analysis studies what fluvial features were not captured in Case 2 and evaluates

how this influences the resulting range of connectivity. The connectivity plot against avul-

sion rate group labels reveals that the low avulsion rate settings are more likely to result

in low connectivity models (see Figure 3.6 b). As the sand proportion is similar, the river

has more time to develop its channel laterally, leading to sand-bodies growing wider at the

inner banks in a low avulsion rate depositional environment. Once avulsion happened, the

sand starts accreting at different places in a distance, making the sand bodies less likely

to connect with each other. In contrast, a high avulsion rate sedimentary environment

promotes the river to shift its channel frequently and distribute the elongated sand bod-

ies broadly in the modelled field, rising the opportunity for sandbodies to connect to each

other.
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A visual check of all horizontal slices from the bottom to the top reveals that nearly all up-

per slices from Case 2 present less-developed channels with elongated sand-body shapes,

consistent with the connectivity VS avulsion rate group labels relationship found in GAN

River-I. The vertical sections of the 3D realisations from Case 2 further prove that the

conditional GAN tends to produce slices reflecting high avulsion rates regardless of using

which type of realisation as the base slice (see Figure 5.6). Figure 5.6 presents an example

of Case 2 generations inconsistent with the preset sedimentary setting, changing the type

of sand-bodies from sheet-type to ribbon-type. Case 2’s SPADE-based generator tends to

abandon and re-initialise a channel (avulsion) instead of developing it, indicating that the

conditional GAN seems to easier have a lower cost/penalty in this way.

As discussed in section 5.2.2, the multi-step enhancement incorporates previously simu-

lated upper slices at earlier steps in training but only uses the latest simulated upper slice

(the slice directly below the current target) as the conditioning data in the conditional

GAN-based framework. In other words, the newest-generated realisation is not directly

correlated to previously simulated slices except for the one directly below it. This corre-

lation works fine for high avulsion rate depositional environments but doesn’t represent

the reality in low avulsion rate depositional environments. In a low avulsion rate purely

aggrading depositional environment, a 3D model’s horizontal layers have stronger spatial

correlations vertically as the river is less frequently changing its channel to another place

far away from the current position. Therefore, lower avulsion rates increase the possibility

that one horizontal layer has a channel located nearby the same place in the layers below

it. Lacking spatial correlations to layers further below the target accounts for the 3D re-

alisations from Case 2 missing well-developed meandering fluvial patterns in their upper

slices.

To address the correlations between horizontal slices, FluvialGAN_3DR incorporates pre-

viously simulated upper slices in the conditioning data with a decay mechanism, mimick-

ing the reality that closer slices have stronger spatial correlations. The correlation strength

is heuristically correlated to the avulsion rate of fluvial systems by a avulsion rate factor,

𝑁𝑎𝑣, which impacts the calculation in the conditioning data decay enhancement. Given

the same input vector and, therefore, the same base slice shown in Figure 5.6, Fluvial-

GAN_3DR develops meandering channels, favouring more lateral-extended (sheet-type)
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FIGURE 5.6: Horizontal and vertical slices of an example initialised with a developed me-
andering pattern from Case 2.

sand bodies (see Figure 5.7). Please be noticed that the 𝑁𝑎𝑣 value is 5 when reconstructing

this sample, and please refer to Section 5.2.5 for the effect of 𝑁𝑎𝑣 on FluvialGAN_3DR.

FIGURE 5.7: Horizontal and vertical slices of an example initialised with a developed me-
andering pattern from FluvialGAN_3DR.

Compared to Case 2, FluvialGAN_3DR explicitly incorporates generation history into

its prediction by adding the historical generations to conditioning data with a decaying

mechanism. This enhancement shares the same idea as the autoregressive process that

uses historical values to predict the next value of the output [Box et al., 2015]. For both
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classical and deep autoregressive models, they predict a single sequence/image value by

value [Box et al., 2015, Hoogeboom et al., 2021, Menick and Kalchbrenner, 2018, Van den

Oord et al., 2016]. Instead, FluvialGAN_3DRdirectly creates the 2D faciesmodel by using

historical generations as the conditioning data. In other words, FluvialGAN_3DR can be

regarded as training a conditional GAN model to generate a 3D cube slice-by-slice in an

autoregressive way.

5.2.4 The Effect of Avulsion Rate Factor during Training

This section investigates the effect of the avulsion rate factor, 𝑁𝑎𝑣 , on training the condi-

tional GAN-based framework to verify if decoupling the decay mechanism and avulsion

rate is appropriate. The standard FluvialGAN_3DR has varied 𝑁𝑎𝑣 values correlated to

the avulsion rate. This study builds two variants of FluvialGAN_3DR by fixing their 𝑁𝑎𝑣
values to two extreme constants: the high avulsion rate variant (𝑁𝑎𝑣 = 1) and the low

avulsion rate variant (𝑁𝑎𝑣 = 5). The high and low avulsion rate variants have the same

model architecture and training configurations. After training, both variants reconstruct

100 3D realisations using the same sets of base slices by feeding the same input vec-

tors. Then, the results of the two sets of 3D samples show in a plot based on their sand

proportion and connectivity (see Figure 5.8). Compared to the standard configuration of

the FluvialGAN_3DR, the high avulsion rate variant shows a smaller Cascade zone in the

NTG-connectivity plot. On the other hand, the low avulsion rate variant appears to present

a wider Cascade zone and a similar data cloud spread.

Visual interpretations of the reconstructed 3D realisations from the high and low avulsion

rate variants reveal the geological reason for the different behaviours in connectivity. The

high avulsion rate variant is similar to Case 2, preferring abandon and re-initialise channels

with the reconstruction upwards (see Figure 5.9 a). On the other hand, the low avulsion rate

variant can keep developing meandering fluvial realisations given to it while maintaining

the type of geological patterns represented by the base slice (see Figure 5.9 b). The spatial

correlation strength variance caused by different 𝑁𝑎𝑣 values accounts for the difference in

geological patterns at reconstructed upper slices. Based on Equation 5.1 and Algorithm

1, a smaller 𝑁𝑎𝑣 value assigns the biggest weight to the slice immediately below, with

the weight descending for deeper slices. Thus, the latest generation (the slice immediately
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FIGURE 5.8: Comparison of sand connectivity against proportion plots between the high
and low avulsion rate variants. (a) is the high avulsion rate variant. (b) is the low avulsion
rate variant. The blue dots are the reference samples from FLUMY. The red cross markers

are samples from GANs.

below the current prediction target) greatly impacts the prediction of the high avulsion rate

variant. In contrast, previously simulated slices (deeper slices) decay rapidly, resulting in

a limited impact on the high avulsion rate variant’s prediction.

FIGURE 5.9: Comparison of meandering patterns between the high and low avulsion rate
variants. (a) is the high avulsion rate variant (𝑁𝑎𝑣 = 1 during training). (b) is the low

avulsion rate variant (𝑁𝑎𝑣 = 5 during training).

According to the analyses above, selecting a big 𝑁𝑎𝑣 value does not undermine the 3D

reconstruction performance in connectivity uncertainty coverage and geological pattern

consistency. However, the 𝑁𝑎𝑣 value in FluvialGAN_3DR training clearly has a significant
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impact on the reconstruction performance at the testing stage. This result opens a further

question: what will happen if only varying the 𝑁𝑎𝑣 in the reconstruction program at the

testing stage?

5.2.5 The Effect of Varying Avulsion Rate Factor during Reconstruc-

tion

A further study explores the effect of using different values of the avulsion rate factor,

𝑁𝑎𝑣, in the reconstruction process at the testing stage to investigate if it is a potential way

of blending the modellers’ understanding of the avulsion rate settings into GANs’ genera-

tions. This study uses the standard configuration and the two variants of FluvialGAN_3DR

presented in Section 5.2.4 to evaluate their performance with different 𝑁𝑎𝑣 values at the

testing stage. All three pre-trained FluvialGAN_3DR generators reconstruct the same set

of base slices for two rounds by setting 𝑁𝑎𝑣 values to one and five, respectively, in the re-

construction process. Then, both quantitative and qualitative analyses compare the recon-

structed 3D realisation sets by calculating each sample’s sand proportion and connectivity

and visualising all slices within this sample.

Firstly, changing 𝑁𝑎𝑣 to the opposite end value in the reconstruction process for both low

and high avulsion rate variants leads to worse performance. For the high avulsion rate

variant (𝑁𝑎𝑣 = 1 in the training process), setting 𝑁𝑎𝑣 to 5 in the reconstruction process

results in generating a big area of background (overbank facies) after reconstructing about

10-20 slices, which causes the data point cloud (the ensemble of realisations) shifts to

the left side in the proportion-connectivity plot (see Figure 5.10). For the low avulsion

rate variant (𝑁𝑎𝑣 = 5 in the training process), setting its 𝑁𝑎𝑣 to 1 in the reconstruction

process at the testing stage doesn’t cause the blank slices issue, which still creates plausible

meandering fluvial channels (see Figure 5.11). The data point cloud reasonably shrinks

to a narrower range in the proportion-connectivity plot. However, the overall quality gets

worse based on visual interpretation. More importantly, when the base slice presents less

developed meandering channels that can either be abandoned or developed later, the low

avulsion rate variant prefers avulsion regardless of the 𝑁𝑎𝑣 values in the reconstruction

process at the testing stage (See Figure 5.9 b and 5.11).
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FIGURE 5.10: Sand connectivity against proportion plot and slices visualisation of the high
avulsion rate variant (𝑁𝑎𝑣 = 1 during training) when setting 𝑁𝑎𝑣 to 5 in the reconstruction

process.

FIGURE 5.11: Sand connectivity against proportion plot and slices visualisation of the low
avulsion rate variant (𝑁𝑎𝑣 = 5 during training) when setting 𝑁𝑎𝑣 to 1 in the reconstruction

process.
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Then, the standard FluvialGAN_3DR reconstructs the same set of base slices using the

two extreme constants (1 and 5), presenting a clear shift in the proportion-connectivity

plot when varying the 𝑁𝑎𝑣 value from one to five (see Figure 5.12). When 𝑁𝑎𝑣 equals 1

in the testing reconstruction, the 3D realisation ensemble from FluvialGAN_3DR shows

slightly narrower ranges of sand proportion and connectivity than GAN River-I. In con-

trast, the 3D realisation ensemble from FluvialGAN_3DR covers wider ranges of sand

proportion and connectivity than GAN River-I when 𝑁𝑎𝑣 is 5 in the testing reconstruction.

The 3D realisations from GANRiver-I result from different avulsion rate settings that have

a direct correlation to the connectivity in this study (see Figure 3.6) – low avulsion rate

models show a bigger connectivity uncertainty. Therefore, the variance of ranges shown

in Figure 5.12 is reasonable as a higher 𝑁𝑎𝑣 value indicates a lower avulsion rate. Due

to the stochastic nature, the base slices set generated by a pre-trained Fluvial GAN con-

tains diverse meandering fluvial patterns reflecting various sedimentary settings regarding

avulsion rates at different channel evolution stages. Thus, even if the 𝑁𝑎𝑣 value is 1 (rep-

resenting high avulsion rate settings) during testing reconstruction, the reconstructed 3D

realisations can still show low connectivity.

FIGURE 5.12: Comparison of sand connectivity against proportion plots when changing
𝑁𝑎𝑣 from 1 to 5 in FluvialGAN_3DR reconstruction process. (a) is setting 𝑁𝑎𝑣 to 1
during reconstruction. (b) is setting 𝑁𝑎𝑣 to 5 during reconstruction. The blue dots are the

reference samples from FLUMY. The red cross markers are samples from GANs

A further visual interpretation illustrates varying the avulsion rate factor is a possible way

of incorporating the modellers’ understanding into FluvialGAN_3DR’s reconstruction.
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FluvialGAN_3DR can create different types of meandering fluvial patterns by changing

the 𝑁𝑎𝑣 value when the base slice shows a less developed meandering pattern (same base

slice as in Figure 5.10 and 5.11). The standard FluvialGAN_3DR creates more elongated

channels when setting 𝑁𝑎𝑣 to one in the reconstruction process (see Figure 5.13 a). Given

the same base slice, the standard FluvialGAN_3DR produces a more meandering channel

when switching 𝑁𝑎𝑣 to five in the reconstruction process (see Figure 5.13 b). This dif-

ference in geological patterns reflects the different geological settings and proves that the

modellers can modulate the produced 3D realisations based on their understanding of the

vertical correlation strength in their reservoirs.

FIGURE 5.13: Comparison of meandering patterns when changing 𝑁𝑎𝑣 from 1 to 5 in
the standard FluvialGAN_3DR reconstruction process. The 𝑁𝑎𝑣 value of the standard
FluvialGAN_3DR ranges from 1 to 5 during training. (a) is setting 𝑁𝑎𝑣 to 1 during re-

construction. (b) is setting 𝑁𝑎𝑣 to 5 during reconstruction.

However, the conditioning data decay enhancement of FluvialGAN_3DR is subject to an

assumption of a purely aggrading system and, therefore, cannot reflect the occurrence of

incisions. First, the GAN River-I dataset used in this study is 3D facies models simulated
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without incision. Thus, no data is available to verify whether the proposed approach works

in an incision case. Second, the conditioning data decay enhancement assumes a corre-

lation between the avulsion rates and the horizontal slices’ vertical relationship, which is

invalid in the incision case. This is because the incision erodes the deposits, making the

time no longer fully determine the vertical facies distribution.

5.3 Summary of Chapter 5

This chapter presents the Fluvial GAN 3D simulator composed of the Fluvial GAN gen-

erator for 2D simulation and the SPADE-based conditional generator for 3D reconstruc-

tion, which is the product of this thesis. Due to the challenges of 3D facies modelling

using GANs, I devised an alternative approach to realise the 3D reservoir facies mod-

elling, reconstructing 3D volumes slice by slice. This 3D reconstruction program, Flu-

vialGAN_3DR, requires a conditional GAN-based workflow using data pairs (an upper

slice and a lower slice) to train a SPADE generator to predict an upper slice conditioned to

a given lower slice. In this way, the Fluvial GAN 3D simulator can create facies models

with an arbitrary number of slices/reservoir thickness in meters, one bottleneck of the pre-

vious 3D convolutional neural network-based GAN models. Also, the FluvialGAN_3DR

training is less computationally costly than conventional 3D GAN training because (1) it

deals with 2D data leading to a lighter GAN model regarding the number of learnable

parameters, and (2) it disconnects the gradients, resulting in a lower demand of the GPU

memory.

I developed two training enhancements, the multi-step and conditioning data decay en-

hancements, for FluvialGAN_3DR to improve its performance in the reconstruction pro-

cess. The multi-step enhancement integrates the reconstruction into the GAN training

workflow, which sets up four reconstruction steps with different target slices above the

base slice. This enhancement trains GAN to avoid only focusing on predicting the target

slice (upper slice) immediately above the given slice (lower slice). The conditioning data

decay enhancement changes the conditioning data (lower slice) in the conditional GAN

from the original slice directly below the current target to a composited slice containing

all slices below the current target with a decaymechanism. So, the closer slices have higher
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weights, and the deeper slices have smaller weights in the conditioning data decay calcu-

lation. This enhancement improves the reconstructed samples’ model diversity at their

upper sections.

I heuristically coupled the avulsion rate group labels in GAN River-I with the avulsion

rate factor (𝑁𝑎𝑣) that reflects the vertical correlation between slices in a purely aggrading

system and suggested that varying the 𝑁𝑎𝑣 value provides an interpretable way of blending

the modellers’ knowledge into the reconstruction process. As 𝑁𝑎𝑣 value is correlated to

the avulsion rate, tuning 𝑁𝑎𝑣 clearly means changing the avulsion rate setting based on

the modellers’ understanding. A smaller 𝑁𝑎𝑣 value suggests a high avulsion rate setting,

resulting in FluvialGAN_3DR producing more elongated channels. On the other hand,

a bigger 𝑁𝑎𝑣 value suggests a low avulsion rate setting, leading to FluvialGAN_3DR re-

constructing more meandering channels. That relationship between 𝑁𝑎𝑣 and geological

patterns is consistent with the observed relationship between avulsion rate and geological

patterns. Thus, the Fluvial GAN 3D simulator not only allows the modellers to choose the

reservoir thickness but also enables tuning geological patterns based on their understand-

ing of the modelled reservoir.
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Chapter 6

GAN-based Approach Extension and
Data Conditioning

In the earlier chapters, Fluvial GAN 3D proved the GAN-based approach could efficiently

create 3D facies models of complex sedimentary systems. Previous chapters used me-

andering fluvial models to demonstrate GAN-based approaches’ capability of learning

geological patterns from process-based models, broadening GANs’ application scope of

subsurface modelling. However, Fluvial GAN 3D has a highly complex architecture and

works on reservoirs with fixed lateral sizes.

Considering the facies model’s different roles in subsurface modelling, Fluvial GAN 3D

needs corresponding developments to fulfil real reservoir applications. For example, mod-

ellers often require the facies model to honour observed data. Thus, conditional simulation

is more desirable, demanding data conditioning techniques to constrain Fluvial GAN 3D.

If the facies model is involved in a model updating pipeline, the modeller perhaps prefers

a small number of parameters in the optimisation. More gaps between Fluvial GAN 3D

and real reservoir modelling need a thoughtful study and appropriate solutions.

This chapter preliminarily investigates how to extend Fluvial GAN to different reservoir

applications. For simplicity, this chapter uses 2D examples to explore other techniques’

effects on GAN-based approaches.

125



6.1 GAN-based Geological Parameterisation

Geological parameterisation is one important application ofGAN-based approaches, which

refers to parameterising large geological models with a small number of elements where

the geological models can be sampled. Such that the modellers can tune their geomod-

els to dynamic data in a geologically consistent way. GAN’s latent vector often obeys a

pre-defined distribution, such as Gaussian distribution, making it suitable to work as a pa-

rameterisation method [Chan and Elsheikh, 2019]. This section uses the Fluvial GAN in

section 4.2 as the baseline to study the effect of the latent vector on generation quality and

size (please refer to the input vector in Figure 2.26 for an illustration of the latent vector

of GANs).

6.1.1 Study of Latent Vector Size

This study decreases the latent vector size of Fluvial GAN to investigate the impact of a

smaller latent size on Fluvial GAN’s generation quality. A smaller number of parameters

in the model updating pipeline is favourable because it reduces the time cost and makes

the optimisation executable by many heuristic-based algorithms, such as genetic algorithm

[Michalewicz and Schoenauer, 1996] and particle swarm optimization [Kennedy and Eber-

hart, 1995]. Table 6.1 summarise the four Fluvial GAN cases with different latent vector

sizes used in this study. The rest settings remain the same as the Fluvial GAN’s default

configuration.

TABLE 6.1: Summary of Fluvial GANs’ latent vector size

Case Baseline Case 1 Case 2 Case 3 Case 4

Latent Vector Size 128 64 32 16 8

After training, the trained generator randomly simulates 1000 realisations for each case for

qualitative and quantitative evaluations. This study follows the same approach as in section

4.2.4 to compare different Fluvial GAN cases in connectivity, diversity and unrealistic

feature occurrence. The above indicators demonstrate the impacts of the latent vector

size on Fluvial GAN’s generation quality regarding different considerations. Modellers,
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therefore, can balance the simulation quality and the number of latent parameters when

they use GAN for geological model updating pipelines.

Based on the calculated sand proportion and connectivity, all four cases achieve compa-

rable performance to the Fluvial GAN baseline. The data clouds of the four Fluvial GAN

cases spread widely (see Figure 6.1). They largely cover the FLUMY data cloud, illustrat-

ing they capture the range of sand proportion and connectivity represented by the training

dataset. Statistics show that decreasing latent vector size has a neglectable impact on sand

proportion and limited (about 5% in mean connectivity) damage to sand connectivity (see

Table 6.2).

FIGURE 6.1: Plot of different Fluvial GAN sets’ Sand Connectivity against Proportion.
Here NTG in the x-axis denotes the proportion of sand. Blue points are FLUMY re-
alisations. Red points are GAN realisations. (a)(b)(c)(d) are Case 1 to 4 in Table 6.1,

respectively.
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TABLE 6.2: Statistics of different Fluvial GAN sets’ sand connectivity and proportion

Data Set Latent Vector Size Sand Proportion Sand Connectivity
Mean Variance Mean Variance

FLUMY Subset NA 0.19 0.005 0.62 0.049
Baseline 128 0.18 0.005 0.58 0.047
Case 1 64 0.19 0.005 0.56 0.049
Case 2 32 0.18 0.005 0.57 0.050
Case 3 16 0.17 0.006 0.56 0.051
Case 4 8 0.18 0.005 0.55 0.044

Then the plots of the sand connectivity probability along the lag distance, show a slight

shift to lower connectivity probability when Fluvial GAN uses a smaller latent vector size

(see Figure 6.2). All four Fluvial GANs present a wide range of sand connectivity proba-

bility, while the mean values and box plots indicate they might slightly underestimate the

connectivity (see Figure 6.2). Though the Fluvial GAN baseline has this underestimation

itself, the decreasing latent vector size seems to enlarge the difference. Nevertheless, the

latent size has a limited impact on Fluvial GAN’s performance regarding the sand connec-

tivity probability.

FIGURE 6.2: Sand connectivity probability curves. Blue curves are realisations from Case
1. Cyan curves are realisations from Case 2. Olive curves are realisations from Case 3.
Orange curves are realisations from Case 4. Green curves are realisations from Fluvial
GAN. Red curves are realisations from the FLUMY training dataset. The solid lines are
mean values, and the black box and dash-lined boxes indicate 75%, medium, and 25% of

the data sets.

UMAP visualisation illustrates Fluvial GANs having smaller latent sizes can still produce

a diverse ensemble of GAN realisation comparable to GAN River-I ensemble diversity.

128



The red points of Fluvial GAN cases in the UMAP space exist in wide areas, largely over-

lapping the blue points (FLUMY realisations) cloud (see Figure 6.3). There is no apparent

shrinkage of the data cloud spread in UMAP plots for cases 1 to 4.

FIGURE 6.3: UMAP visualisation of FLUMY realisations against Fluvial GANs’ realisa-
tions. Blue points are FLUMY realisations. Red points are Fluvial GANs’ realisations.

Qualitative analysis reveals that the decreasing latent size impairs Fluvial GAN’s perfor-

mance in geological realism and artefact level. Based on visual interpretations of all re-

alisations from the four Fluvial GAN cases, the occurrence of two major issues increases,

the ‘closed channel’ pattern and the ‘gridding effect’ (see Table 6.3). More importantly,

the ‘gridding effect’ level increases when the latent vector size is decreased, resulting in

poor quality (see Figure 6.4).

TABLE 6.3: Occurrence-based indicators for different Fluvial GAN cases

Case Latent Vector ‘Closed channel’ ‘Gridding effect’
Size Occurrence Occurrence

Baseline 128 0.7% 2.1%
Case 1 64 5.2% 1.9%
Case 2 32 1.3% 13.7%
Case 3 16 0.8% 7.1%
Case 4 8 1.9% 11.3%
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FIGURE 6.4: Poor quality facies models collected from Case 4.

6.1.2 Study of Enlarging Generation Size

Customising GANs’ generation size remains challenging, impeding its quick implemen-

tation to different size reservoirs. Though Chapter 5 presented a conditional GAN-based

approach to simulate facies models with flexible control of the thickness, resizing facies

models laterally still relies on retraining some neural networks or changing the latent size

of the generator. Particularly enlarging the generation size of a pre-train GAN is a helpful

feature for the reuse of the GAN model in different-size reservoirs, as GAN generations

are normally small in pixels.

This study tries to enlarge a pre-train Fluvial GAN’s generation size proportionally by

increasing the latent size. Earlier research proved that deep convolution-based GAN con-

taining no fully connected layer could produce different size data [Laloy et al., 2018, Song

et al., 2022]. Still, this method can only vary generation size proportionally while not

customising the width and height of the generated data.

This study tests a fully convolution-based variant of Fluvial GAN by replacing the dense

layer with transposed convolutional layers. The new generator architecture allows a varied

input size and proportionally projects the input vector to data space (see Table 6.4 for the

generator architecture details). The rest configuration remains the same as the standard

Fluvial GAN.

To understand the impact of the change in the generator architecture, this study takes the

same analyses as before, calculating connectivity to evaluate quantitatively, using UMAP

to visualise the generation diversity, and interpreting unrealistic features visually. GAN
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TABLE 6.4: The Architecture of Fluvial GAN Generator without Dense Layer

Layer State size

Latent Vector (Batch size, 128, 1, 1)
TransposeConvNN Block (stride=1,padding=0) (Batch size, 512, 4, 4)
TransposeConvNN Block (stride=2,padding=1) (Batch size, 512, 8, 8)
NN Block, Up sample (2) (Batch size, 512, 16, 16)
NN Block, Up sample (2) (Batch size, 256, 32, 32)
NN Block, Up sample (2) (Batch size, 128, 64, 64)
NN Block, Up sample (2) (Batch size, 64, 128, 128)
NN Block, Up sample (2) (Batch size, 32, 256, 256)
NN Block, 3X3Conv-7, SoftMax (Batch size, 7, 256, 256)

3X3Conv-7 denotes 3X3 convolutional layer with seven filters. NN Block refers to the neural networks
sequentially composed of a batch normalisation, a leaky ReLU, and a 3X3 convolutional layer. TransposeC-
onvNN Block refers to the neural networks sequentially composed of a 4X4 transposed convolutional layer,
batch normalisation and a ReLU.

can still produce diverse facies models according to the connectivity plot and UMAP visu-

alisation (see Figure 6.5). GAN generations show a good coverage of sand proportion and

connectivity ranges represented by GAN River-I. The data spread in the UMAP space also

indicates the generation diversity of the fully convolution-based variant is comparable to

the standard Fluvial GAN (see Figure 6.3 and 6.5 b).

FIGURE 6.5: The sand connectivity against proportion plot and UMAP visualisation of
FLUMY realisations against Fluvial GANs’ realisations. Blue points are FLUMY reali-

sations. Red points are Fluvial GANs’ realisations.
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On the other hand, the occurrence and the level of unrealistic features increase to some de-

gree based on visual interpretation compared to the standard Fluvial GAN. Same to Case

4 in section 6.1.1, the fully convolution-based variant creates poor quality facies models

containing severe ‘gridding effect’ (see Figure 6.6), which are unseen in the standard Flu-

vial GAN. Based on the occurrence, the ‘closed channel’ probability increases to 4.4%,

and the ‘gridding effect’ probability increases to 3.5%, but both are within an acceptable

value (smaller than 5%).

FIGURE 6.6: Poor quality facies models collected from the fully convolution-based variant.

These analyses demonstrate the fully convolution-based variant still performs well though

more likely to produce unrealistic features than the standard Fluvial GAN. Most gener-

ations show plausible diverse meandering patterns, indicating this Fluvial GAN variant

learns from the training dataset and is free of mode collapse. This result supports further

variation in generation sizes by modulating the latent vector of this pre-trained generator,

which is the main objective of this study.

The fully convolution-based variant allows a varied spatial size (height and width) of the

latent vector to produce different size generations. The convolutional neural network block

in Fluvial GAN doesn’t change the spatial size, while only the upsampling layer doubles

the size in each spatial dimension. So, the GAN generation size is proportional (32 times)

to the second transposed convolutional layer’s output size. According to Equation 2.17,

the spatial size relationship between the latent vector and GAN generation size is given by

Table 6.5.

The first experiment feeds random latent vectors with a larger spatial size into the pre-

trained fully convolution-based generator to create bigger facies models. When the latent
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TABLE 6.5: Occurrence-based indicators for different Fluvial GAN cases

Latent First Transposed Second Transposed GAN Output
Spatial Size Convolution Output Size Convolution Output Size Spatial Size

1×1 4×4 8×8 256×256
2×2 5×5 10×10 320×320
3×3 6×6 12×12 384×384
4×4 7×7 14×14 448×448
5×5 8×8 16×16 512×512

vector spatial size is 2, the pre-trained generator can produce both plausible and implau-

sible facies models (see Figure 6.7). Though those models cover a wide range of connec-

tivity, their sand proportions are generally bigger than the training dataset because GAN

tends to produce big blocks of point bars (yellow facies), such as the pattern in Figure 6.7

d. When the latent vector spatial size increases to 5, the generation quality worsens, and

the sand proportion becomes bigger (see Figure 6.8). Most generations contain broken

artefacts or big chunks of implausible point bars, though many facies models still have

some plausible meandering patterns as patches in the modelled domain.

FIGURE 6.7: Results of the fully convolution-based variant producing larger facies models
by feeding random latent vector whose spatial size is 2. (a) A plausible 320×320 less
developed meandering model. (b) A plausible 320×320 lateral developed meandering
model. (c) An implausible 320×320 less developed meandering model with poor quality
and broken geo-bodies. (d) An implausible 320×320 lateral developedmeanderingmodel.
(e) The sand connectivity against proportion plot of 1000 320×320 random realisations.
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FIGURE 6.8: Results of the fully convolution-based variant producing larger facies models
by feeding random latent vector whose spatial size is 5. (a) An implausible 512×512 less
developed meandering model. (b) An implausible 512×512 lateral developed meander-
ing model. (c) The sand connectivity against proportion plot of 1000 512×512 random

realisations.

The second experiment expands the latent vector by repeating its values in spatial dimen-

sions to enlarge the facies models to a bigger size. In this way, the actual number of GAN’s

latent parameters remains unchanged as the standard when it needs to generate bigger-size

facies models. The generations gradually show more undesired patterns and have a bigger

range of sand proportion with the increase of the latent vector spatial size (see Figure 6.9).

The enlarged facies models present a clear trace of repeated patterns (Figure 6.9 b and c)

corresponding to their standard size facies models (Figure 6.9 a). Similar to the results

of feeding larger random latent vectors, the enlarged facies models are mostly implausi-

ble with artefacts and stacked point bars. Only a few examples show positive results that

the enlarged facies models contain plausible meandering patterns, though they have strong

duplicated patterns (see Figure 6.10).

This study demonstrates enlarging the Fluvial GAN generation size by changing its latent

vector size performs undesired and needs further improvements to tackle this challenge.

Using fully convolution-based GAN to produce different-size outputs is theoretically prac-

tical but difficult to handle the process-based meandering patterns. Fluvial GAN tends to

make implausible facies models When feeding a bigger-size latent vector than it is trained.

How to stabilise Fluvial GAN’s performance when producing larger-size facies models

based on a pre-trained Fluvial GAN leaves an unsolved problem for future investigation.

As for creating large-size data, Karras et al. [2017] developed a GAN training method for

super-resolution image generation, called progressive growing, which has been applied to

reservoir facies modelling [Song et al., 2021a,b, 2022]. This method can help GAN create
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FIGURE 6.9: Results of the fully convolution-based variant producing larger facies models
by expanding the latent vector. (a) Meandering models and the sand connectivity against
proportion plot from 1000 1×1 latent vectors. (b) Meandering models and the sand con-
nectivity against proportion plot from 1000 2×2 latent vectors with repeated values of the
1×1 latent vectors. (c) Meandering models and the sand connectivity against proportion

plot from 1000 5×5 latent vectors with repeated values of the 1×1 latent vectors.

FIGURE 6.10: An example of the fully convolution-based variant successfully enlarging
facies models by repeating a latent vector to expand it from 1×1 to 5×5.
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big (in terms of pixels) images by using the same images from low to high resolution to

train the GAN model hierarchically. This super-resolution task shares the same challenge

as modelling large-size reservoirs – generating large-size (in terms of pixels) data. The

main difference is that the super-resolution task aims to produce a higher-resolution image

of the same image currently in a lower resolution. In contrast, reservoir modellers want to

produce a larger size reservoir model that can share similar or partially the same patterns

but a different (in terms of the whole modelled area) reservoir. Based on [Song et al.,

2022], their fully convolutional neural network-based GAN model trained with progres-

sive growing successfully produces a larger binary 3D cave model than the training data

by enlarging the latent size. Therefore, the progressive growing method can potentially

stabilise Fluvial GAN with a fully convolutional neural network design.

6.2 Data Conditioning

Conditioning GAN to observed data is highly required in real-field reservoir modelling

but is particularly challenging due to GAN’s competitive learning mechanism and for-

ward sequential model structure. Earlier GAN applications to conditional simulation used

post-processing approaches, e.g. inference networks, and different conditional GANs to

condition the simulations to wells data, probability maps and global features [Chan and

Elsheikh, 2019, Song et al., 2021a, Zhang et al., 2019b]. Please refer to Section 2.3.3 for

the overview of those conditioning techniques’ pros and cons.

Post-processing allows a pre-trained unconditional GAN to simulate conditional realisa-

tions. Previous research developed different conditioning frameworks using the latent vec-

tor of a pre-trained GAN generator. This method separates the conditional simulation into

two parts: geological patterns learning and getting the realisations to honour the observed

data. One advantage of this method is that it allows the pre-trained GAN to be reusable in

different reservoirs with the same size and sedimentary setup, which saves time in creating

the training dataset and training the GAN model.

Conditional GAN-based frameworks can soft condition GAN generations to multiple types

of data but have a general problem: they couple geological pattern learning and data con-

ditioning. Most conditional GAN training processes train GANs to infer target data based
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on the given conditioning data. This results in GAN relying on conditioning data with

strict type and range, which means GAN doesn’t learn adequate geological features from

the training data but learns to infer geological models from the features provided by the

conditioning data. One drawback of this approach is that the user has to re-train the whole

conditional GAN or find a way to convert all other conditioning data into the same format

used in the current conditional GANwhen the type of conditioning data available changes.

This section includes two studies on conditioning Fluvial GAN to nine points observation

using the methods presented in Chan and Elsheikh [2019] and Zhang et al. [2019b]. Ap-

pendix A presents a preliminary work about a conditional GAN-based framework that sep-

arates the data conditioning from the traditional conditional GAN learning process while

this approach is still immature and problematic.

Chan and Elsheikh [2019] designed a GAN-based conditional simulator using a neural

network-based inference network to project a new latent vector to a pre-trained GAN latent

vector (see Figure 6.11). The training of the inference network aims to minimize the KL

divergence from the conditional latent vector (the Bayesian posterior) distribution to the

distribution density of this output vector of the inference network. Chan and Elsheikh

[2019] deduced the KL divergence calculation of the inference network, and the final form

is given by Equation 6.1 (please refer to Chan and Elsheikh [2019] for more details of the

deduction)

𝐷𝐾𝐿 (𝑞𝜙 | |𝑝(𝑧 |𝑑)) = E𝑧∼𝑞𝜙𝐿 (𝑧) − 𝐻 (𝑞𝜙) (6.1)

where the first element, E𝑧∼𝑞𝜙𝐿 (𝑧), calculates the mean loss (log posterior of the condi-

tional latent vector), − log 𝑝(𝑧 |𝑑), by adding the difference between observed data and

sampled realisation at the well locations, | |𝐺 (𝑧)𝑜𝑏𝑠 − 𝑑 | |2, and the prior distribution den-

sity (Gaussian distribution). The second element, 𝐻 (𝑞𝜙), is a k-nearest-neighbor-based

estimation of the negative entropy −E𝑧∼𝑞𝜙 log 𝑞𝜙 (𝑧).

The first study trains the same inference network with the default settings to condition

the pre-trained Fluvial GAN generator to the nine points observation (see Figure 6.15

where the orange dots denote sand and the blue dots denote shale). Compared to the

implementation in Chan and Elsheikh [2019], this program sums the sand-prone facies

relative probabilities (Fluvial GAN generator’s output) instead of converting the observed
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FIGURE 6.11: A schematic diagram of the inference network method presented in Chan
and Elsheikh [2019].

data (sand and shale) to -1 and 1 during the data mismatch calculation, | |𝐺 (𝑧)𝑜𝑏𝑠 − 𝑑 | |2.

Also, due to the graphic card limitation, the batch size reduces from 32 to 16.

Within 200,000 iterations, however, the framework fails to converge, and the conditional

Fluvial GAN’s generations, therefore, do not perfectly honour the observed data, though

the accuracy of data matching at well locations has a clear increase. All three loss values

in Equation 6.1 show a limited change during training (see Figure 6.12 a). The mean

(negative) log posterior of the latent vector (output of the inference network), whose prior

is a Gaussian distribution, decreases due to the decrease of the prior distribution density

and the mismatch between the observed data and conditional realisations, | |𝐺 (𝑧)𝑜𝑏𝑠 − 𝑑 | |2

(see Figure 6.12 b).

A further study investigates the effect of this conditioning framework by comparing the

accuracy and model diversity between the unconditional Fluvial GAN and the inference

network-based conditional Fluvial GAN. Fluvial GAN randomly simulates 1000 realisa-

tions by sampling 1000 latent vectors as the control group. The same latent vectors feed

into the inference network-based conditional Fluvial GAN to create 1000 realisations as

the experimental group. Compared to the unconditional realisation set, the mean accuracy

of the conditional realisation set’s data match at the well locations increases from 60% to

72%. The conditioned realisation set still shows good coverage of the sand connectivity
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FIGURE 6.12: Loss curves during the training of the inference network. (a) Curves of
the three elements in Equation 6.1. The purple, orange and green curves show changes
of E𝑧∼𝑞𝜙𝐿 (𝑧), 𝐻 (𝑞𝜙), and 𝐷𝐾𝐿 (𝑞𝜙 | |𝑝(𝑧 |𝑑)), respectively. (b) A zoom-in view of the
expected loss (purple curve), E𝑧∼𝑞𝜙𝐿 (𝑧), and its two elements,− log 𝑃𝑟𝑖𝑜𝑟 (blue curve)

and − log 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (red curve).

and proportion ranges (see Figure 6.13). According to the UMAP visualization, the con-

ditional realisation set has a good model diversity (see Figure 6.14). A visual check of

the conditional realisation set indicates that the conditional generator can produce diverse

plausible meandering facies models, though it does not perfectly match the observed data

at well locations (see Figure 6.15). Those plots prove this conditioning framework doesn’t

undermine the realism and diversity learned by Fluvial GAN.

Zhang et al. [2019b] developed an optimisation-based conditioning framework that searches

latent vectors to minimise the mean distance between the mismatched observed data and

its nearest corresponding facies’ location. The object function of the optimisation-based

conditioning framework consists of two elements: perceptual loss and contextual loss. The

perceptual loss is a neural network-based score, which is the binary cross-entropy loss for

the generator, log(1 − 𝐷 (𝐺 (𝑧))). The contextual loss is the sum of the shortest distance

between well locations with mismatched data and the locations of the correct facies, given

by Equation 6.2 [Zhang et al., 2019b]:

𝐿𝑐 (𝑍 |𝐼1 = 𝑖1, 𝐼2 = 𝑖2, ..., 𝐼𝑀 = 𝑖𝑚) =
𝐾∑
𝐾=1

𝑀∑
𝑑=1

min | |𝑦(𝑖 (𝑘) (𝐺 (𝑧))) − 𝑦(𝑖 (𝑘)𝑑 ) | |1 (6.2)

where 𝐾 is the facies number, 𝑀 is the number of well data, 𝐼 is the generated realisation, 𝑖

is facies at the well location 𝑑, 𝑦 refers to the locations of all pixels with the corresponding
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FIGURE 6.13: Comparison of the sand connectivity against proportion plots between un-
conditional realisations from Fluvial GAN and conditional realisations from the inference

network-based conditional Fluvial GAN generator.

FIGURE 6.14: Comparison of the UMAP visualisations between unconditional realisations
from Fluvial GAN and conditional realisations from the inference network-based condi-

tional Fluvial GAN generator.
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FIGURE 6.15: Conditional realisations with good data match observed data at well loca-
tions. The orange dots denote sand, and the blue dots denote shale.

facies, 𝐺 is the pre-trained generator, and 𝑍 is the latent vector.

To integrate Fluvial GAN into the optimisation-based conditioning framework, a couple of

changes to the original implementation replace the DCGAN architecture with the Fluvial

GAN. First, the perceptual loss calculation needs to process through the PatchGAN dis-

criminator and uses the mean values of the output collection of the discriminator instead of

a single value as its input. As Fluvial GAN’s loss function is hinge loss, the perceptual loss,

therefore, needs to calculate −𝐷 (𝐺 (𝑧)) instead of log(1 − 𝐷 (𝐺 (𝑧). Secondly, the output

of the Fluvial GAN generator is the relative probability maps for each facies instead of a

single image with continuous values. So, the conversion from the Fluvial GAN generator

output to the binary realisation is approximated by summing all relative probabilities of

sand-prone facies. Thirdly, this study tests the framework using two implementations: one

uses both perceptual and contextual loss to optimise the latent vector, and the other only

uses contextual loss to optimise the latent vector. The reason for having the second imple-

mentation is that the original implementation in Zhang et al. [2019b] gave a very big weight

to the contextual loss (𝜆 = 1000), which indicates a relatively low impact of the perceptual

loss on the optimisation. So, the second implementation excludes the perceptual loss term

that relies on a significantly different discriminator from its original implementation. The

same 1000 latent vectors used in testing the inference network-based conditioning frame-

work work as the initial latent vectors of this optimisation-based conditioning framework.

Following Zhang et al. [2019b], each optimisation iterates 1500 times, timing about 10

min for a single GPU RTX3090 and a single 3.6 GHz CPU Intel(R) Xeon(R) W-2133.
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Though the conditional realisations still present plausible patterns, both implementations

of this framework show a limited accuracy increase in data match. The mean accuracy

of the data matches at the well locations increases from 60% to 62% after optimising

the latent vectors. Based on the visual and quantitative assessment, this framework also

well preserves the geological realism and model diversity learned by Fluvial GAN. The

ensemble of conditional realisations covers a wide range of NTG and connectivity (see

Figure 6.16 a) The UMAP visualisation also supports that this conditioning framework

does not sacrifice the generation diversity (see Figure 6.16 b).

FIGURE 6.16: The sand connectivity against proportion plot and UMAP visualisation of
conditional realisations from the optimisation-based conditioning framework.

Two reasons account for the low accuracy increase in this Fluvial GAN conditional reali-

sation set produced by the optimisation-based conditioning framework.

First, stochasticity strongly dominates this framework in the latent vector initialisation and

optimisation. Here is an example that both unconditional realisations with randomly ini-

tialised latent vectors match five points in nine locations (see the first column of Figure

6.17). After running 1500 iterations of the optimisation, the conditional realisation pro-

duced by the latent vector with a bad initialisation doesn’t have a better data match, while

the one with a good initialisation improves the number of points matched to the condi-

tioning data from five to seven (see the second column of Figure 6.17). This comparison

illustrates that a good initial guess strongly impacts the optimisation result, which is one
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potential shortcoming of gradient-based optimisers that they are local search algorithms

whose performance is affected by the ‘starting point’ [Chapelle and Wu, 2010, Kim et al.,

2007].

FIGURE 6.17: Illustration of the stochastic effect on the optimisation-based conditioning
framework. The first column is the unconditional realisation from Fluvial GAN using a
randomly initiated latent vector. The second column is the conditional realisation from
Fluvial GAN using the optimised latent vector from the optimisation-based conditioning
framework using the same latent vector in the first column as the input. (a) an example of
a bad initialisation of the latent vector. (b) an example of a good initialisation of the latent

vector.

Secondly, Fluvial GAN is more complex than previous GAN applications, and the de-

sign of merging Fluvial GAN into the optimisation-based conditioning framework lacks

proper adjustment. Fluvial GAN has different model architecture, which may require fur-

ther tuning the configurations of the optimisation-based conditioning framework by broad

tests on hyper-parameters of this framework. Also, the method in Zhang et al. [2019b]

is a gradient-based multivariate optimisation, using an Adam to minimise two objectives.
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Many techniques, e.g. regularisation and gradient penalty, which may improve the op-

timisation performance, e.g. smoothing spike loss, are not applied to this optimisation-

based conditioning framework. In addition, the original code of the official implementa-

tion in Zhang et al. [2019b] is not available online. Therefore, this implementation of the

optimisation-based conditioning framework is limited to the author’s understanding of the

paper Zhang et al. [2019b].

6.3 Summary of Chapter 6

This chapter presented several extensions to further develop the Fluvial GAN3D simulator,

catering to the demands for applying it to different reservoir modelling applications. For

simplicity, I used Fluvial GAN for 2D facies modelling to investigate other GAN config-

uration choices, e.g. varying the latent vector, and how to merge other GAN techniques,

e.g. data conditioning, with Fluvial GAN. For use as a geological parameterisation, a

smaller latent vector size of Fluvial GAN benefits the optimisations in the model updating

pipeline. However, a smaller latent vector size worsens the Fluvial GAN’s performance in

geological realism based on visual interpretation. Thus, further efforts on optimising the

Fluvial GAN’s architecture are necessary if the modellers require a smaller latent vector

size. Defining the facies models’ size post-training is still challenging for most GAN ap-

plications. Though the Fluvial GAN 3D simulator allows defining the reservoir thickness

due to its reconstruction nature, the Fluvial GAN (2D) is inflexible to change its lateral

sizes. Based on the preliminary experiments in this chapter, excluding the fully connected

layer does enable Fluvial GAN to vary its generation size proportionally. However, this

method greatly increases the latent vector size and produces undesirable realisations when

using it to enlarge the generation size. Thus, more research on this problem is essential to

bring GANs to real reservoir applications. For data conditioning, both inference network-

based and optimisation-based conditioning framework work as post-processing and don’t

undermine the model diversity of Fluvial GAN. However, these two methods either have

unimpressive or no apparent improvements in point data matching accuracy. Therefore,

how to condition Fluvial GAN to well data remains a future study. Overall, the Fluvial

GAN model shows good compatibility with different GAN techniques proposed by other

researchers, though all need further developments to improve the performance.
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Chapter 7

Conclusions and Perspectives

7.1 Conclusions

This thesis demonstrated that generative adversarial networks (GANs) could learn mean-

dering fluvial patterns produced by a complex process-based model. The process-based

model, FLUMY, creates plausible facies models by simulating geological processes, such

as channel migration, avulsion, levee breach, deposit sedimentation, etc. Those facies

models contain multiple facies with complex and diverse geometries, reflecting the plausi-

ble complexity of subsurface reservoirs. Whether deep generative models, such as GANs,

can learn to produce geological patterns at the process-based model level of complexity

deserves a thoughtful investigation. This extension of GANs in facies modelling would

help incorporate geological knowledge, concepts and interpretations into geo-modelling.

This PhD project developed a bespoke GAN-based framework for 3D facies modelling,

Fluvial GAN 3D, to tackle identified challenges in GAN learning meandering fluvial geol-

ogy. Based on a series of studies, several algorithms and techniques successfully improved

the GAN learning performance undermined by challenges related to multi-facies, mean-

dering patterns and data size. A new GAN variant, Fluvial GAN, can accurately reproduce

2D geometrical features of meandering fluvial facies and capture facies transition along the

channel centreline. Based on the Fluvial GAN, a reconstruction-based conditional GAN

framework, FluvialGAN_3DR, successfully learns to create 3Dmodels layer by layer from

bottom to top, conditioning each new layer on the one below. This feature allows the users
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to set up the reservoir thickness and guarantees geological consistency vertically. The pre-

trained Fluvial GAN generator and the pre-trained SPADE generator-based reconstruction

process in FluvialGAN_3DR compose the Fluvial GAN 3D simulator that can create 3D

facies models with the user-defined reservoir thickness in meters/slices.

The studies and results in the preceding chapters support the novel findings of the thesis

below:

1. GAN River-I dataset provides a pre-canned sterner benchmark to deep generative

models’ applications to facies modelling at the process-based model level. The fa-

cies models in GAN River-I are from a process-based model for meandering fluvial

reservoirs, FLUMY,which can simulate diverse types of meandering fluvial geology

by tuning the parameters related to geological processes. By selecting different con-

figurations in the avulsion process while controlling the net-to-gross (NTG), GAN

River-I contains various low NTG scenarios, including ribbon-type and sheet-type

sand-bodies. The lowNTG reduces the amalgamation andmakes it easier to identify

individual channels to evaluate GANs visually. Also, due to the low NTG setting,

GANRiver-I covers a wide range of sand-body connectivity, which is one of the cru-

cial properties in reservoir modelling. Therefore, the connectivity and uncertainty

in GAN River-I can be one quantitative indicator of GAN generations.

2. PatchGAN discriminator is a recommended model architecture of GANs when the

training data has a large spatial size. High resolution and large reservoir size may

require the spatial size of the facies model to be bigger than the spatial size of the

training data used in common deep generative models (64×64 or 128×128 pixels).

Though PatchGANwas originally amodel structure in a conditional GAN for image-

to-image translation, PatchGAN can also work as a generative model by replacing

the conditional generator with an ordinary generator, for example, a deep convolu-

tional generator. PatchGAN outperformed the other three popular GANs, DCGAN,

WGAN and WGAN-GP, in learning 256 × 256 pixels meandering fluvial patterns

composed of three facies. PatchGAN realisations have more accurate geology than

the other three GANs in the comparison study.
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3. Using gradient penalty terms in the loss function is a recommended way of pre-

venting mode collapse, which means GANs can only create one or a few samples

instead of all types in the training dataset, though this method is also data- and task-

depended. The zero-centred gradient penalty greatly increased the generational di-

versity in Fluvial GAN 2D realisations while performing undesirable when applied

to the 3D reconstruction framework, FluvialGAN_3DR. Instead, the one-centred

gradient penalty suited the FluvialGAN_3DR, favouring a higher diversity of sand-

body type in the upper section of different 3D models.

4. The One-Hot Encoder helps GAN reduce the ‘mislabelling’ issue, which means

GAN create facies in the place of other facies whose encoded value (after data pre-

processing) is close to them when learning multi-facies distribution. The ‘misla-

belling’ is not obvious when the facies model has three or fewer facies but gets

severe when the number of facies is large, typically seven in this thesis. The One-

Hot Encoder is a standard method of encoding categorical data to numeric. Thus, it

is more suitable for dealing with the multi-facies model and is highly recommended

based on the result of the study in this thesis. Of course, the data pre-processing has

to use other algorithms if the number of facies is too big, for example, twenty fa-

cies. Because the One-Hot Encoder expands the data size several times equal to the

number of facies, making the GAN training more difficult as the target data volume

significantly increases.

5. The proposed Hybrid-discriminator composed of a convolution-based discriminator

and a dilated convolution-based discriminator helps GAN learn meandering fluvial

geology better by reducing the occurrence of geologically unrealistic features, such

as ‘closed channel’. The ‘closed channel’ pattern is a loop pattern unseen in the

training dataset but exists in many GANs generations studied in this thesis. The

‘closed channel’ pattern features plausible locally but unrealistic globally, indicating

a strong correlation to the receptive field of convolutional neural networks. Using

dilation can efficiently increase the receptive field while maintaining the kernel size

unchanged in convolution but introduces the ‘gridding effect’. A hybrid-dilation

discriminator adopting different dilation rates cannot reduce the ‘gridding effect’

in the case of this thesis. Therefore, the Hybrid-discriminator uses a PatchGAN
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discriminator without dilation and a PatchGAN discriminator with a hybrid dilation

design to jointly penalise the input data, which reaches a good balance between the

‘gridding effect’ and geological realism.

6. Using the conditional GAN-based approach to predict an upper slice based on a

given lower slice is a more geologically intuitive way of applying GAN to 3D geo-

modelling in line with conventional geostatistical geomodelling algorithms. The

training of this approach requires pairs of data in the form of a target upper slice and

a conditioning lower slice, which feeds into the discriminator together by concate-

nating in the spectral dimension to prevent the generator from duplicating the given

lower slice as both slices are real data from the training dataset. Unlike common

GAN-based 3D modelling, this conditional GAN-based 3D reconstruction, Fluvial-

GAN_3DR, allows the user to define the target reservoir thickness/number of layers

without re-training or post-processing. This bright feature makes the pre-trained

GAN models more reusable for building up 3D models, avoiding wasting time re-

training them when needed to apply them to a similar reservoir with different thick-

nesses. Particularly, this approach surpasses fully convolutional-based GANs in

controlling the vertical-to-lateral size ratio because fully convolutional-based GANs

can only vary their output size with fixed ratios to their latent vector size.

7. The proposed multi-step training enhancement can help preserve the meandering

channel geometry and placement of associated facies in the 3D reconstruction pro-

cess of FluvialGAN_3DR. By involving the reconstruction in training, the multi-

step enhancement defines multiple target upper slices that the generator needs to

predict by sequentially reconstructing upwards with different steps/times. The train-

ing, therefore, no longer just aims to predict the upper slice immediately above the

given lower slice but infers the development of meandering channels in a sedimen-

tary section deposited during a period. This enhancement effectively prevents the

pre-trained reconstruction process from gradually losing geological realism, which

means the predicted upper slices no longer present appropriate meandering fluvial

patterns with forward reconstruction continues building up upper layers.

8. The proposed conditioning data decay enhancement improves the conditional GAN-

based reconstruction’s learning capability in the spatial correlation strength between
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slices reflecting the sedimentary settings. This enhancement introduces historical

GAN generations into the conditioning data in a decaying manner, imitating vertical

correlations among geomodel layers in a purely aggrading system. This conditioning

data decay enhancement prevents FluvialGAN_3DR from collapsing to generate

high avulsion rate models, enriching the model diversity and converging a good

range of sand connectivity.

9. Coupled avulsion rate with the conditioning data decay enhancement introduces an

extra parameter, the avulsion rate factor, into the FluvialGAN_3DR framework to

affect 3D geological patterns, which heuristically relates the avulsion rate settings

of the 3D training data to the spatial correlation strength in a purely aggrading en-

vironment. The avulsion rate factor in the conditioning data decay enhancement

provides an alternative way of controlling GANs’ sense of sedimentary settings.

The traditional conditional GAN uses global features as an extra input to the neural

networks, hindering the modeller from understanding how it impacts the outputs.

In contrast, this approach explicitly incorporates the understanding of geological

knowledge into the conditional GAN training and generation, making it easier to

understand the global features’ impact on GAN generation.

7.2 Recommendations

This thesis is a step forward in deep generative models application to geomodelling from

learning object-based to process-based simulations while leaving a lot of unsolved issues

for further investigations. The author highly recommends researchers who are interested

in this field consider the perspectives below as potential future studies:

1. How to reduce the latent vector size of GAN while not undermining the generation

quality needs a thoughtful study of the relationship between the generator’s input and

the output size. One potential use of GANs is incorporating the pre-trained generator

into the history-matching workflow to update reservoir models. To reduce the com-

putational cost and enable the use of heuristic-based optimisers, e.g. particle swarm

optimiser, the history matching workflow would better have as few parameters as
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possible. The latent vector of GAN will introduce input parameters into the model

updating loop if the pre-trained generator is involved in the workflow. Therefore,

extending GANs applications to other pipelines would benefit from a smaller latent

vector. However, according to the preliminary study in Section 6.1.1, decreasing the

latent vector size worsens Fluvial GAN’s generation quality. A hyper-parameter op-

timisation study on GAN’s structure, particularly the generator’s architecture, would

benefit the integration of GANs and the model updating loop.

2. Rethink the use of GAN to simulate 3D models would enable the user to control the

3D models’ size, which allows the reuse of the pre-trained GAN, saving consider-

able time on dataset preparation and GAN training. When different reservoirs have

similar sedimentary environments but contrasting sizes, GANs have to run the train-

ing again with a new model structure and even need a new training dataset because

they are inflexible with their output size. This thesis proposed FluvialGAN_3DR

that allows modelling a deposit of an arbitrary thickness but can not customise the

lateral extent. To the best scope known, current methods still rely on increasing

some layers’ size of a pre-trained model to proportionally change the size [Laloy

et al., 2018, Song et al., 2022]. However, based on the preliminary result in Sec-

tion 6.1.2, expanding the latent vector in the spatial dimension can enlarge Fluvial

GAN’s generation size proportionally but cause realism losses in both geological

patterns and sand connectivity. Also, this method increases the latent vector size,

which is unfavourable considering the potential use of GANs in model updating.

How to freely define GAN generations’ lateral extent size and even customise the

field shape remain a problem to be solved.

3. Applying data conditioning to GAN realisations still needs more effort to bridge

GAN learning and data conditioning harmonically and efficiently. Current meth-

ods, to the best scope of the author’s knowledge, either require post-processing to

conditionGANgenerations to observed data or directly use conditional GAN to infer

facies models based on given observed data. As discussed in Section 6.2, both ap-

proaches have natural drawbacks impeding them from becoming a general solution.

For the post-processing-based framework, though they largely preserve the learned

patterns and allow the reuse of a pre-trainedGAN, the extra optimisations either have
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difficulty in converging and even fail to converge or highly rely on the initialisation

of the latent vector, which is time-consuming and cannot satisfy the demanding of

hard conditioning, e.g. well data, On the other hand, conditional GAN performs soft

conditioning and accepts nearly all kinds of data as an input, which makes particu-

larly seismic conditioning a low-hanging fruit compared to well data that requires

hard conditioning. In Chapter 5, SPADE-based FluvialGAN_3DR uses historical

generations as the conditioning data to condition the generated upper slice success-

fully. While Park et al. [2019] used more semantic classes (e.g. 35, 150, 182 from

different datasets) to condition their SPADE generator than this study (7 maps). So,

it is possible to condition Fluvial GAN 3D generations by adding more maps, e.g.

seismic amplitude or impedance maps to the conditioning data (input of SPADE).

One clear drawback, as discussed in Appendix A, is that current conditional GAN-

based frameworks train GAN to learn geological patterns and condition observed

data synchronously. This training way greatly reduces the chance of reusing pre-

trained GAN models. This thesis tried to separate the conditional GAN training

into GAN learning and data conditioning in Appendix A. However, this preliminary

study results in undesirable generation quality, which may need to redesign the way

of introducing conditioning data into the framework. The idea of making the GAN

application a more general tool is to separate GAN learning and data conditioning.

So that the modeller can reuse the learned geological patterns and adapt them to the

observed data available in the target reservoirs.

4. GAN evaluation is another urgent and crucial topic in the GAN application field, not

only for facies modelling. Data containing complex patterns, e.g. images and facies

models, raises quality evaluation challenges that quantitative scores cannot perfectly

describe and replace human/expert interpretation, such as photo-realism in the com-

puter vision domain, geological realism in geomodelling, etc. Computer scientists

leave this challenge to neural networks, which is what GAN is doing, using a neural

network, the discriminator, to judge if a sample is realistic. Though this eased the

pain of evaluating complex data, who can judge if the GANs do a proper job? In

the past decades, many indicators, such as net-to-gross, connectivity, etc., provided

quantitative descriptions of geological models and revealed key geological features
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considered in reservoir modelling. However, those indicators cannot fully represent

the geological realism that geologists often need to interpret based on their knowl-

edge of conceptual geology and outcrops. In photosynthesis studies, researchers

often use pre-trained image classifiers to evaluate GAN generation quality; for ex-

ample, the inception score evaluates GANs by calculating the relative probability

of each random GAN generation’s label and the diversity of predicted labels of the

ensemble of random generations [Salimans et al., 2016]. Those scores have two sig-

nificant questions to answer. First, how to get a pre-trained classifier and associated

labelled dataset used for geomodelling that convinces geologists and data scientists?

Second, neural networks are still black-box models, and GAN itself uses one neural

network (discriminator) to supervise the other (generator). How to justify that it is

fair to use another neural network to supervise GAN? Inspired by the rapid scene

categorization method [Borji, 2019, Goodfellow et al., 2020] in computer vision,

this thesis used an occurrence-based qualitative score to evaluate Fluvial GAN 2D

realisation in Section 3.2.3, which counts on how many realisations contain a recur-

rent unrealistic feature. However, this score is very subjective and time-consuming.

A rule-based method to replace the manual check with auto-evaluation could be

helpful.

5. Making the GAN model and neural networks, in general, more interpretable and

explainable is another significant topic. As mentioned earlier, neural networks lack

transparency, making understanding and improving GAN models difficult. Once

the GAN model becomes more interpretable, geologists will be more confident and

convinced with the GAN generations. This thesis discussed the potential use of an

extra parameter outside the GAN model to control the correlation strength between

conditioning data and target in Section 5.2.5. This parameter has a straightforward

definition and is heuristically correlated to the avulsion, a geological process, mak-

ing user easier to understand its effect on GAN reconstructed 3Dmodels. Of course,

this work is insufficient to make GANs transparent, and further deep investigations

are needed.

6. How to improve deep generative models’ generations quality based on reusing pre-

trained (partial) neural networks as the new model’s components would trigger the
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next boom of their development. Due to the lack of understanding, many GAN im-

provements rely on extensive explorations of hyper-parameters and architectures or

inspired inventions of methods, model structures, and training strategies. GAN vari-

ants perform well and badly when given different datasets, which takes a long time

to find a suitable configuration. If a framework could keep updating a GAN gener-

ator to improve the performance in different aspects by reusing pre-trained neural

network models or layers, the GAN-based simulator will deserve long-term devel-

opment as the computations cost spent on earlier stage GAN learning would not be a

waste. This idea shares a similar purpose as transfer learning, where researchers use

pre-trained neural networks in one domain (commonly image classification tasks) as

the intermediate model in other research areas to tackle different tasks [Bozinovski

and Fulgosi, 1976]. So, many unrealistic features identified in both Fluvial GAN

and FluvialGAN3D generations could be continuously improved in a shorter time

without training everything from the beginning, which may even give a worse result

in other aspects.

7. A thoughtful investigation of GAN applications to facies modelling in the presence

of uncertainty in sedimentary environment interpretation would enable a further dis-

cussion on handling a multiple-scenario challenge. This thesis only focused on low

NTG meandering fluvial systems modelled by FLUMY. The Fluvial GAN and Flu-

vialGAN3D may perform differently when applied to high NTG meandering fluvial

or other fluvial systems (e.g. braided and anastomosing rivers) and even differ-

ent sedimentary environments (e.g. delta and deep marine). Two approaches can

be seen to implement GANs uncertainty between alternative sedimentary environ-

ments. One is to optimise GANs for each sedimentary system and use another con-

trol, either an expert’s or computer-assisted decision on which GAN should be used

tomodel a reservoir. Another one is to train a GAN using a data-rich dataset contain-

ing all possible patterns and then study the GAN latent space to optimise the ranges

of each element to discover the best-fit patterns for a reservoir. Both approaches

need considerable efforts to exploit in depth.

153



Appendix A

Conditional GAN-based Approach

This section applies the GAN conditioning technique used in Chapter 5 to Fluvial GAN

for 2D seismic conditional facies modelling. Conditional GAN takes additional data, such

as associated labels or maps, as an extra input to soft condition the output to those data.

A couple of conditional GAN techniques blend conditioning data into the generator, for

example, conditional normalisation technique [Park et al., 2019]. Spatially-adaptive denor-

malisation (SPADE) is one popular conditional normalisation that extracts features from

conditioning data to bias the normalisation calculation (see Section 2.3.3.3 for the details)

[Park et al., 2019]. This method is also one of the essential elements in the reconstruction-

based Fluvial 3D framework (see Section 5.2), where the SPADE condition the target upper

layers to the layers below. Indeed, SPADE can also condition GAN generations to seis-

mic data with appropriate data pre-processing. However, as mentioned in section 6.2, the

traditional training process of conditional GAN limits the reuse of the pre-trained model

when the new conditioning data has different types or ranges from the conditioning data

used for training.

This section uses a pre-trained Fluvial GAN as an example to present the preliminary re-

sults of decoupling the data conditioning from SPADE-based conditional GAN training.

This SPADE-based conditional framework works as a post-processing of Fluvial GAN

with a self-training loop (see Figure A.1). This framework consists of a SPADE generator,

an external forward modelling tool and a pre-trained Fluvial GAN, including the generator
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and the discriminator. The pre-trained Fluvial GAN generator with fixed parameters pro-

duces unconditional realisations as the target for this conditional framework. The SPADE

generator has the same architecture as the Fluvial GAN generator, except for adding the

SPADE elements to all batch normalisation layers. The SPADE generator loads the pre-

trained Fluvial GAN generator’s parameters and freezes those parameters during training.

Therefore, only the SPADE elements in this framework have initialised learnable param-

eters, which will be optimised during training. This feature makes the connection to the

external model that contains in-differentiable calculation possible. Any forward modelling

tool can integrate into this conditioning framework to calculate the conditioning data the

user wants to condition Fluvial GAN generations. This study uses a simplified version of

a petro-elastic modelling tool presented in FAHIMUDDIN [2009] to simulate synthetic

seismic impedance. The SPADE generator takes the synthetic seismic impedance asso-

ciated with unconditional realisations as the conditioning data to simulate conditional re-

alisations. The discriminator of the pre-trained Fluvial GAN extracts features from the

unconditional and conditional realisations to compute the mean absolute difference as the

loss, known as the feature loss [Park et al., 2019,Wang et al., 2018b], to update the SPADE

elements’ parameters.

FIGURE A.1: SPADE-based conditional Fluvial GAN training workflow.

As the resolution of the facies model is much higher than seismic, this framework linearly

upscales the synthetic acoustic impedance before feeding into the SPADE generator. This

reduces the spatial size of the conditioning data from 256 × 256 to 64 × 64. Considering
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the grid size of the facies model is 10 meters, one pixel of the upscaled acoustic impedance

slice represents a 40𝑚 × 40𝑚 grid.

Further data pre-processing on the upscaled acoustic impedance is still necessary because

its values are beyond the desired input range of common machine-learning algorithms.

This study shows an example of a further data transformation that duplicates the acoustic

impedance maps twice and centralises the value at 8.5, as its original range is about 7

to 10 GPa. One map minus 8.5, and the other reverses the calculation of the first one.

This transformation scales the acoustic impedance map to a smaller range and uses two

transformed maps with reversed processes to avoid introducing potential biases from the

value to the conditional GAN. The data transformation presented here exemplifies one

way of pre-processing the acoustic impedance as a preliminary result. Other methods of

transforming data are also encouraged.

The training of this framework demands both CPU andGPU, slowing down the processors’

performance in computation speed due to the switch between CPU and GPU calculations.

A GPU-based forward modelling tool can significantly accelerate the whole training pro-

cess. The training for 100,000 iterations takes 24 hours using a single GPU RTX3090 and

a single 3.6 GHz CPU Intel(R) Xeon(R) W-2133.

After training, the SPADE generator can produce conditional realisations by feeding a

given synthetic acoustic impedance map. As this framework uses random generations

from Fluvial GAN to train the SPADE elements, GAN River-I can work as the test set

for the SPADE generator. The subset of GAN River-I in section 3.2.2 feeds into the for-

ward modelling simulator to produce 1600 synthetic acoustic impedance slices. Then, the

trained SPADE generator creates conditional facies realisations based on those acoustic

impedance slices.

The conditional Fluvial GAN infers the conditional facies realisations, overlapping sig-

nificantly with the ground truth regarding the sand proportion and connectivity range and

in the UMAP visualisation. Compared to the ground truth, conditional Fluvial GAN pro-

duces less low connectivity samples with NTG above 0.3, slightly underestimating the

connectivity uncertainty (see Figure A.2 a). On the other hand, the conditional Fluvial

GAN faithfully creates channel elements based on the given acoustic impedance map,
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showing a pretty high coincidence to the ground truth in UMAP visualisation (see Figure

A.2 b). This is because the acoustic impedance map provides the location of geobodies to

the conditional generator, resulting in the conditional facies models locating geobodies at

the same place as the training data.

FIGURE A.2: The sand connectivity against proportion plot and UMAP visualisation of
conditional realisations from the SPADE generator. Blue points are FLUMY realisations.

Red points are SPADE-based conditional GAN realisations.

However, realisations from the SPADE-based conditional Fluvial GAN are not visually

competitive to the slices from GAN River-I, though they honour the meandering shape

and local spatial correlations (see Figure A.3). The SPADE-based conditional Fluvial

GAN preserves the sinuous shape of channels and local facies transition from channel

centrelines to distal, which is what the pre-trained Fluvial GAN learned from GAN River-

I. Unlike the unconditional realisations from the Fluvial GAN or the training data from

GAN River-I, conditional realisations are more likely to contain broken features and tend

to miss some small thin channels.

A further analysis comparing the Fluvial GAN’s generations with and without condition-

ing data reveals that the decrease in the reproduction quality may result from a natural flaw

of this conditioning framework design. The latent vector of Fluvial GAN samples facies

realisations in a parametric manner, which means its values control the fluvial elements’

pattern and location. While the conditioning framework still initialises the latent vector

stochastically. This causes the conflict of the sand bodies’ location between information
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FIGURE A.3: Examples of conditional Fluvial GAN realisations and their counterparts in
GANRiver-I. (a) different realisations from conditional Fluvial GAN. (b) the ground truth
of the facies models producing the acoustic impedance maps for conditional Fluvial GAN

from the latent vector and acoustic impedance map. An example illustrates this conflict of

location information from the two sources (see Figure A.4). The pre-trained Fluvial GAN

produce an unconditional realisation with a sand body at the bottom of the image by in-

putting a latent vector (see Figure A.4 a). However, the acoustic impedance map indicates

the upside of the image contains a sand body, which contradicts the unconditional reali-

sation. So, when the Fluvial GAN, given this latent vector, uses this acoustic impedance

map as the conditioning data, the SPADE has to assign big weights to its parameters to

bias the neural networks in Fluvial GAN. This information conflict, therefore, undermines

the generation quality of conditional Fluvial GAN.

FIGURE A.4: An example of the stochastic nature Fluvial GAN unconditional generation
conflicting the conditioning data from the acoustic impedance map. (a) an unconditional
realisation from Fluvial GAN given a latent vector. (b) the acoustic impedance of a 2D
slice from GAN River-I. (c) a conditional realisation from SPADE-based Fluvial GAN

using the same latent vector. (d) the ground truth of the 2D slice.
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Another trial on the generation’s diversity reveals a limited variance of realisations condi-

tioned to the same acoustic impedance map when feeding different input vectors. Figure

A.5 shows an example of varying input vector results in limited changes of the condi-

tional realisation. Only the mud plug facies downstream present different broken levels,

changing the facies’ connectivity. This low variance further proves the SPADE elements

dominate the forward calculation of the Fluvial GAN, leading to the ineffectiveness of the

latent vector.

FIGURE A.5: Conditional realisations conditioned to the same acoustic impedance map
using different latent vectors as the input.

Therefore, this preliminary experiment demonstrates that the SPADE-based conditioning

framework can blend conditioning data into Fluvial GAN generation without retraining

the whole Fluvial GAN model but needs further development to balance the strength of

conditioning data. Three potential ways of improving this framework are: (1) modify the

loss function to reduce the impact of conditioning data on facies realisations; (2) further

blur the acoustic impedance or compute the seismic amplitude map if fairly assumptions

of layers surrounding it are available as even the upscaled one still shows very clear sand

bodies’ shapes; (3) rethink the way of using SPADE to merge conditioning data into the

pre-trained Fluvial GAN model.

This section extends the proposed conditioning framework to seismic soft conditioning in

principle. Still, the full 3D conditioning GAN study is outside this thesis and can be seen

as a further seamless extension of this work. The approach presented in Chapter 5 deals

with 2D facies models iteratively, making it practical to integrate the conditioning method

applied to 2D images into the iterative approach, for example, conditional normalisations,

e.g. SPADE. Adding more maps, e.g. seismic impedance maps, to the conditioning data
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as the input of SPADE is a possible method of conditioning Fluvial GAN 3D simulations,

though foreseeable CPU/GPU demanding increases have to be tackled.
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