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Abstract 

The GAN River-I data set is designed to provide a stern test for machine learning and 

geostatistical tools that wish to recreate the complex geometries of realistic facies distributions in 

subsurface reservoirs. It provides more complex, non-stationary facies distributions than previous 

open data sets, some of which have modelled channels but do not include the number and 

complex association of facies types of this data set. 

 

GAN River-I is a dataset of 2D layers of 3D facies models produced from a process-based 

simulator of a meandering fluvial system. The data set contains 25 simulated 3D cubes, converted 

into three datasets consisting of 16,000 2D models/images, each representing the increasing 

complexity of the modelled facies. The number of facies decreases between the three data sets, 

with nine facies, seven facies and three facies, respectively. The facies reduction is carried out 

by amalgamating similar facies in terms of their likely permeability to represent flowing units in a 

subsurface reservoir. The data is therefore provided to allow users to increase the model 

complexity in a manageable and comparable way between groups using the data.  

 

GAN River-I covers a range of low NTG meandering patterns with varied avulsion rates. Each 

dataset comprises an ensemble of meandering models representing various plausible patterns 

and, therefore, can be used as a geologically plausible benchmark for testing generative models’ 

performance. We provide three data file formats, including image, Ndarray and GSLIB, to adapt 

to different researchers’ preferences. 
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Subject Computers in Earth Sciences 

Specific 

subject area 

Meandering system, facies modelling 

Type of data 
GSLIB 
Ndarray 
Image 

How the data 

were acquired 

By computer simulation using FLUMYTM 5.912 Process-based 

channelized reservoir models. Copyright © MINES PARIS-PSL / 

ARMINES. Free download from https://flumy.minesparis.psl.eu  

Data format 
 
Raw 

Description of 

data collection 

We collect all horizontal slices from all 25 3D simulations from FLUMYTM 

to compose this dataset and save them in three formats to make it 

convenient for researchers with various backgrounds. Besides this 

original dataset, we provide two additional sets with fewer facies to meet 

the demands of data complexity in different tasks. 

Data source 

location 

·        Institution: Heriot-Watt University 

·        City/Town/Region: Edinburgh 
·        Country: United Kingdom 

Data 

accessibility 

Repository name: Github 

Direct URL to data: https://github.com/GeoDataScienceUQ/GANRiverI 

Related 

research 

article 

C. Sun, V. Demyanov, D. Arnold, Geological Realism in Fluvial Facies 

Modelling with GAN under Variable Depositional Conditions. 

Computational Geosciences. In Review. 

 

Value of the data 

·     GAN River-I can work as a benchmark dataset to train and test deep generative models’ 

performance in learning complex geological patterns. 

·     Researchers working in geomodelling, computer vision and deep learning can benefit from 

GAN River-I as it introduces a complex model generation task to the research community. 

https://flumy.minesparis.psl.eu/
https://github.com/GeoDataScienceUQ/GANRiverI
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·     GAN River-I can also directly work as an ensemble of fluvial facies models to investigate 

geological uncertainty in geomodelling, history matching and forecasting in various industries, 

such as oil and gas, carbon capture storage, geothermal and hydrology etc. 

1. Objective 

 

We have created a data set to provide a fiendishly tough challenge for the growing community of 

researchers developing machine learning and geostatistical methods to model subsurface 

reservoir geology accurately. To this end, we created the GAN River-I fluvial meandering dataset, 

which has complex facies geometries and associations. We used a stochastic process-based 

model, FLUMYTM [1].  

 

Recent research shows that machine learning approaches, like GAN and VAE, can reproduce 

quite complex fluvial channel patterns [2,3]. However, the datasets used in these papers lack the 

full complexity of a real fluvial system as they miss critical facies types like point bars and 

downstream variations in channel fill. Often the training datasets are simulated by object-based 

models, like TiGenerator [4], which cannot, for instance, capture the complex arrangement of 

lateral and downstream accretion that occurs in real rivers. Facies models from process models 

like FLUMYTM capture the realistic facies geometries by mimicking geological processes and the 

resulting deposits but can’t condition to known data from the subsurface, so they have limited 

direct applicability to this problem. Therefore, the GAN River-I is timely and well suited for the next 

phase of GAN research into geological modelling, providing the pre-canned and comparable data 

for training machine learning-based algorithms. No benchmark dataset of this complexity for 

geological reservoir modelling is yet available in the research community. The data may also have 

applications in river characterization or hydrology.  

2. Data description 

 

GAN River-I has three training datasets, and each consists of 16,000 2D data/images converted 

from 25 3D low NTG meandering simulations with five different avulsion rates. Each dataset 

contains three folders because we store data in three formats, including GSLIB (.dat), Ndarray 

(.npy) and image (.png) file (see Figure 1). Each 2D data/image is 256X256 and named in the 

form of ‘Group_Sample_Layer_Facies.format’. For example, ‘2_1_0_Facies.npy’ means this data 

comes from the base (0th) layer of sample one in group 2 and saves in Ndarray format.  
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Figure 1. The dataset structure of data in the repository. 

 

The three training datasets have a different number of facies suitable for various needs of 

benchmarking applications to model meandering systems of different levels of detail. Every facie 

has a unique code in these training datasets (see Table 1).  

 

Table 1. Relationship between FLUMYTM Facies and Dataset Codes. 

Facies 9-Facies Dataset 7-Facies Dataset 3-Facies dataset 

Channel Lag 1 0 (Channel Lag) 0 (Point Bar) 
Point Bar 2 1 (Point Bar) 0 (Point Bar) 
Sand Plug 3 2 (Sand Plug) 1 (Channel) 
Crevasse Splay I 4 3 (Crevasse Splay) 2 (Background) 
Crevasse Splay II Channel 5 3 (Crevasse Splay) 2 (Background) 
Crevasse Splay II 6 3 (Crevasse Splay) 2 (Background) 
Levee 7 4 (Levee) 2 (Background) 
Overbank 8 5 (Overbank) 2 (Background) 
Mud Plug 9 6 (Mud Plug) 1 (Channel) 

 

The 9-Facies dataset uses the raw facies code exported from FLUMY, which preserves all details 

produced by modelled processes. Lateral accretion packages composed of point bar (sand) and 

channel lag (coarse residual) deposit at the inner bank with channel migrating. Abandoned 

channels fill with sand (sand plug) and mud (mud plug) after avulsion or meander cut-off. Every 

overbank flooding places deposits on the flooding plain from proximal to distal, transiting from silt 

(levee) to shale (overbank). Erosive deposits (Crevasse splay I) deposit aside the meander when 

levee breaches occur. Sediments may evolve from erosive to non-erosive (Crevasse splay II), 

and FLUMY may add channels (Crevasse splay Channels) to the non-erosive deposits. This 

training dataset suits testing algorithms’ power in learning processes and multi-facies distribution 

[5] because the data preserves all facies transitions, regardless of their frequency.  
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The 7-Facies dataset keeps facies with contrasting rock properties, while the facies model is 

simplified by reducing the crevasse splay-associated facies. We know crevasse splay deposits 

can form a significant part of fluvial systems and preserve complex facies distribution [6]. In 

contrast, crevasse splay deposits only take up about 0.4% in the simulated FLUMYTM models. 

The 7-Facies dataset involves precise facies distribution within the geo-bodies that impact the 

subsurface flow response and can describe the complex sand distribution, such as the connected 

point-bars scenario [7]. This dataset can be the benchmark for testing advanced machine learning 

algorithms in learning multi-facies distribution.  

 

The 3-Facies dataset focuses on the meandering channel shape and the placement of lateral 

accretion packages. This dataset adapts to evaluating ML models in learning geometries [8] and 

can work as an ensemble of facies models to describe isolated sand bodies, like the isolated point 

bars scenario [7].  

 

 
Figure 2. An example of FLUMYTM data in the three training datasets. 

3. Experimental design, materials and methods 

 

3.1 FLUMY Simulation 

 

FLUMYTM is a stochastic and process-based model which creates facies models by mimicking 

channel evolution in temporal and deposits associated facies along the channel centrelines. 

Figure 3 illustrates the modelled geological processes in FLUMYTM, including aggradation, 

channel migration, avulsion, meander cut-off and levee breaches. The aggradation process 

deposits sedimentary on the modelled domain when overbank flooding occurs. Channel migration 

refers to the channel lateral migrating on the modelled field, commonly estimated by the bend 

theory, which is the linearized hydraulic equation [9]. Meander cut-off and avulsion are two types 

of channel abandonment. The meander cut-off forms a new channel by connecting two sides of 

a meander loop and abandoning the old channel [10]. Avulsion, including regional and local 

avulsion, is a process of the meandering river abandoning the old channel for a new one [11]. We 

use FLUMYTM v.5.912 as the simulator to generate an ensemble of meandering models reflecting 

various sedimentary settings.  
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Figure 3. Processes of the meandering system in FLUMYTM. From FLUMYTM v.5.912 user guide. 

 

We create five low NTG meandering simulations with the same FLUMYTM parameters for each 

avulsion rate to describe the aleatory uncertainty of the natural system by inherent stochasticity. 

The stochastic process allows FLUMYTM to create different models using the same settings while 

only changing the seed value that we use: ‘165426111’, ‘165426222’, ‘165426333’, ‘165426444’ 

and ‘165426555’ in this study. We fix the FLUMYTM parameters to keep a low NTG (about 20%) 

and moderate sedimentation rate (0.4 cm/year), except for the avulsion rate. We assign different 

avulsion rates to build a range of geologically realistic meandering patterns that cover a possible 

range of natural variability (see Figure 4). 

 

 
Figure 4. FLUMYTM simulations with different avulsion rates. Vertical exaggerated. 

 

FLUMYTM parameters selection relies on the non-expert user calculator (Nexus) [12]. The input 

of Nexus includes channel maximum depth, sandbodies extension index (SEI) and net to gross 
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(NTG). We set the maximum depth to 5 meters in Nexus to determine the channel geometry 

parameters in FLUMYTM. After a trial and error, we set Nexus’ NTG to 10%, which results in the 

NTG of the meandering models reaching around 0.2 in our study. We use the SEI in Nexus to 

determine the values of different avulsion rates and refer to the modern river records to support 

the selected avulsion period range. We choose the minimum (20) and maximum values (160) of 

the SEI and three typical values (50, 80, 110) indicating ribbon, standard and sheet scenarios, 

respectively. Table 2 summarises the five SEI values and corresponding FLUMYTM avulsion 

parameters. According to the recording of modern rivers, the avulsion period ranges from 28 to 

1400 years [13]. This range works as extra support for checking the avulsion period range instead 

of a constraint on the avulsion period because Slingerland suggested that a bigger range may 

exist, and no theoretical limits exist. 

 

Table 2. Avulsion parameters used in FLUMYTM. 

Group Number 1 2 3 4 5 

Sandbodies Extension Index 20 50 80 110 160 
Regional Avulsion Period, 𝑇𝑅 190 480 800 1000 1500 

Local Avulsion Period, 𝑇𝐿 105 270 435 600 885 

Total Avulsion Period 68 173 282 375 557 

* Avulsion includes regional avulsion and local avulsion;  
1

𝐴𝑣𝑢𝑙𝑠𝑖𝑜𝑛 𝑃𝑒𝑟𝑖𝑜𝑑
=

1

𝑇𝑅
+

1

𝑇𝐿
 

 

3.2 Datasets Production 

 

We convert every FLUMYTM 3D simulation cube into 2D data/images by slicing every 0.1 meters 

vertically. We export the 3D sequence between 0 to 64 meters to avoid undefined values in 

FLUMYTM and sample the discretized cubes every 0.1 meters, which produces 640 2D 

data/images. The same process operates on all 25 simulations. Thus, the dataset consists of 

16,000 data/images, named the 9-Facies dataset in GAN River-I. 

 

We group some facies to make the 7-Facies dataset and 3-Facies dataset. For the 7-Facies 

dataset, we name three facies, ‘crevasse splay I’, ‘crevasse splay channel’ and ‘crevasse splay 

II’, as ‘crevasse splay’, and keep the rest unchanged. Then, we use one unique code to represent 

each facies. We take similar operations to make the 3-Facies dataset. ‘Channel lag’ and ‘point 

bar’ compose the new ‘point bar’ in 3-Facies dataset because they both belong to lateral accretion 

deposits in the meandering system. ‘Sand plug’ and ‘mud plug’ comprise the new ‘channel’ of the 

3-Facies dataset as they deposit in the abandoned channel. Table 1 summarises the code of 

every facies in each dataset. 

Ethics statements 

 

We claim this dataset doesn’t involve human subjects, animal experiments or data collected from 

social media platforms. 
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