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o Key industry partners: Huawei, Sber, 
Gazpromneft, CityAir, Yandex

o Potential partners: financial institutions (e.g., 
Sber, VEB.RF, Gazprombank), governmental 
bodies

o Academic partners: Tech. Univ. Munchen, 
Univ. of Hamburg, Univ. of Oxford, Institute for 
Applied Informatics (Germany), etc.

Impact: RAIC has strong potential to become the worldwide recognizable center uniting the state-
of-the-art expertise in AI and ML technologies for Industrial Analytics Applications. Such center will 
provide solutions to existing technological barriers in the industry based on fundamentally solid 
solutions, and provide elite education to future leaders in Industrially-oriented AI both in research and 
innovation. 

Core team
• 7 Profs., 1 Dr. Sci.
• 50 researchers
• 30 PhD students

Core team & structure

Evgeny Burnaev
Associate Professor
Director 

Innovation
o develop a software platform providing an access to 

frameworks for 
ü Data Fusion,
ü Physics-Informed ML and
ü Green AI

o develop prototypes of AI based products for multi-
scale monitoring and control of ESG risks to 
optimize management decisions and reduce 
carbon footprint

o deliver prototypes to the industrial companies and 
startups to support Russia National Strategy in AI 
and Russia Energy Strategy

o IP generation

Research Center in Artificial Intelligence 
in the direction of optimization of management decisions to 
reduce carbon footprint (RAIC)

Partners Prototypes to deliver
o monitoring of a carbon footprint
o assessment of atmospheric air quality and 

calculations of atmospheric transport processes
o optimization of management decisions in the 

field of oil production
o analysis of physical and financial risks due to 

climate changes
o acceleration of learning and compression of 

large neural networks

Strategic Mission: develop AI-based applied SW to 
estimate and minimize carbon footprint and ESG risks

Research areas
• Data Fusion and 3D 

Computer Vision  
• Physics-Informed ML  
• Efficient DL for Green AI 

technologies  
• ML for Industrial Predictive 

Analytics

Recent academic achievements
o >200 papers in AI and modeling (>20 Core A/A*) in 

2018-2021
o SGP Best Dataset Award 2019
o ANNPR Best Paper Award 2020
o 3 Ilya Segalovich Yandex Awards 2018, 2019, 

2020
o DLGC CVPR Workshops in 2020, 2021
o Science Award of Moscow Government in 2018
o 5th IEEE Int. Conf. on Internet of People Best 

Paper Award in 2019
o Int. ML summer schools (MLSS, SMILES) in 2019, 

2020

and many 
others...

Industrial Expertise: since 2007



Metamodeling of reservoir properties

Input

➜ 3D microstructural image of digitized core



References:
• O. Sudakov, E. Burnaev, D. Koroteev. Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep 

neural networks. Computers and Geosciences, Volume 127, June 2019, Pages 91-98 
• D. Volkhonskiy, E. Muravleva, O. Sudakov, D. Orlov, B. Belozerov, E. Burnaev, D. Koroteev. Generative Adversarial Networks for 

Reconstruction of 3D porous media from 2D slices. Physical Review E, 2022 

Practical advantages

➜ Significant (up to 10.000 times) acceleration 
of permeability calculation on digitized 
samples

Metamodeling of reservoir properties





Flow simulation 6

Previous permeability prediction approach

400x400x400 
Berea sample 9261 100x100x100 

Berea subsamples
9261 pore

network models

Minkowski features

MLP

XgBoost

True k

Predicted k

Network characteristics: median pore radius, mean pore radius, 
median throat radius, mean throat radius, median throat length, 
mean throat length, median pore connectivity number, mean pore 
connectivity number, and total pore count

Minkowski functionals: volume, area, 
mean breadth and the Euler-Poincar
characteristic (enumeration of open voxels, 
faces, edges and vertices in case of 0-1 
image)



Flow simulation

Different feature generation pipelines

400x400x400 
Berea sample 9261 100x100x100 

Berea subsamples
9261 pore

network models

Minkowski features

VGG-PCA features2D CNN

Net features

MLP

XgBoost

True k

Predicted k

3D CNN



Obtained results Approach ABSq
MF 0.0396
MF ALL 0.0370
NET 0.0372
VGG-PCA 0.0287
3D CNN 0.0284

ABSq metric was used to 
provide interpretable evaluation

Sample Conv3D Dense PermeabilityMaxPool3D

Is this the end? No!



Further challenges

• We would like to have more tractable and accurate models 
for prediction of transport properties of the rock

• Validation on experimental data
• Coupling of simulations and experiments; fine-tuning of 

simulation models on experimental data

Topology to the rescue!
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Manifold learning – Data Analysis technology based 
on geometrical model about high-dimensional data

A. The world is multidimensional

B. Multidimensional data are difficult to use

C. Real-world data have low-dimensional structure

D. The world is not flat (nonlinear)

1024´1024: d » 106
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The world is not flat (nonlinear) 

Linear interpolation Nonlinear interpolation
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unknown -dimensional surface – Data manifold
covered by single chart defined on Coordinate space            

Manifold covered by a single chart (surface in        )
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Topological Data Analysis

Source: Ulrich Bauer. Topological Data Analysis: An 
Introduction to Persistent Homology. MLSS, 2019
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Persistent Diagram (in 1d)

Source: https://towardsdatascience.com/persistent-
homology-with-examples-1974d4b9c3d0



Source: Ulrich Bauer. Topological Data Analysis: An 
Introduction to Persistent Homology. MLSS, 2019

Persistent Barcodes



Source: Ulrich Bauer. Topological Data Analysis: An 
Introduction to Persistent Homology. MLSS, 2019

Persistent Barcodes



Source: Ulrich Bauer. Topological Data Analysis: An 
Introduction to Persistent Homology. MLSS, 2019

Persistent Barcodes



Source: Ulrich Bauer. Topological Data Analysis: An 
Introduction to Persistent Homology. MLSS, 2019

Persistent Barcodes



Persistent Barcodes

Source: Ulrich Bauer. Topological Data Analysis: An 
Introduction to Persistent Homology. MLSS, 2019



Persistent Barcodes

Source: Ulrich Bauer. Topological Data Analysis: An 
Introduction to Persistent Homology. MLSS, 2019



Example of core samples

Zero permeability (in vertical direction) Non-zero permeability



Example of core samples

Zero permeability (in vertical direction) Non-zero permeability



Euclidean Distance Transform
Let A ∈ 𝑋 then the Euclidean distance from the boundary of A to all points x ∈ 𝑋

Example for the norm % !Filtration



Minkowski functionals

• Conclusion: Minkowski functionals can not detect 
permeability of core samples reliably

Zero 
permeability

Non-zero 
permeability

Euler characteristics

Square
Perimeter

Core A Core B Diff. in %



Persistent barcodes (dimension 0)

• Persistent barcodes: behaviour of topological characteristics of dimension 0 depending on characteristic size
• Black lines denotes those topological characteristics which corresponds to components of the connectivity of a 

set of pores
• We can calculate features from persistence barcodes to differentiate between zero/non-zero permeability

Zero 
permeability

Non-zero 
permeability
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1. Linear model

Log Permeability ~ a ! Log Porosity + b

MAE(Permeability) ~ 157 mD

2. Linear model + correcting term

Log Permeability ~ a ! Log Porosity + b + Δ(x)

• Δ(x) – Random Forest
• x = ("max", "mean", "std", "count", "entropy", "median", "sum", "kurtosis", 

"skewness") – features calculated from the 
persistence diagram

• MAE(Permeability) ~ 121 mD

Predicted Log Permeability 
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Some results
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Comparing Data Manifolds via 
Manifold Topology Divergence

joint with S.Barannikov, I.Trofimov, G.Sotnikov, E.Trimbach, 
A.Korotin, A.Filippov

Manifold Topology Divergence: a Framework for Comparing Data 
Manifolds. NeurIPS, 2021
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Latent Generative Model
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Evaluation of GANs

Source: Geometry score: A method for comparing 
generative adversarial networks. ICLR, 2018

35

IDEA: evaluate GAN by 
comparing manifolds of 
real and generated objects

The manifold of a model
(generated objects)

The manifold of data 
(real objects)
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Geometry Score

Mean Relative Living 
Times (MRLT)

Persistent Barcode

Khrulkov, V., & Oseledets, I. Geometry score: A method for 
comparing generative adversarial networks. ICML, 2018
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Manifold Topology Divergence: a Framework for Comparing Data 
Manifolds. NeurIPS, 2021. S.Barannikov, I.Trofimov, G.Sotnikov, E.Trimbach, 
A.Korotin, A.Filippov, E.Burnaev. 

IDEA: compare manifolds

via calculating topological features of 

/

,

/and

Manifold Topology Divergence [NeurIPS, 2021]



Q
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Manifold Topology Divergence: a Framework for Comparing Data 
Manifolds. NeurIPS, 2021. S.Barannikov, I.Trofimov, G.Sotnikov, E.Trimbach, 
A.Korotin, A.Filippov, E.Burnaev. 

Manifold Topology Divergence [NeurIPS, 2021]

P
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Manifold Topology Divergence: a Framework for Comparing Data 
Manifolds. NeurIPS, 2021. S.Barannikov, I.Trofimov, G.Sotnikov, E.Trimbach, 
A.Korotin, A.Filippov, E.Burnaev. 

Manifold Topology Divergence [NeurIPS, 2021]
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Manifold Topology Divergence: a Framework for Comparing Data 
Manifolds. NeurIPS, 2021. S.Barannikov, I.Trofimov, G.Sotnikov, E.Trimbach, 
A.Korotin, A.Filippov, E.Burnaev. 

Manifold Topology Divergence [NeurIPS, 2021]
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Manifold Topology Divergence: a Framework for Comparing Data 
Manifolds. NeurIPS, 2021. S.Barannikov, I.Trofimov, G.Sotnikov, E.Trimbach, 
A.Korotin, A.Filippov, E.Burnaev. 

Manifold Topology Divergence [NeurIPS, 2021]
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Manifold Topology Divergence: a Framework for Comparing Data 
Manifolds. NeurIPS, 2021. S.Barannikov, I.Trofimov, G.Sotnikov, E.Trimbach, 
A.Korotin, A.Filippov, E.Burnaev. 

Manifold Topology Divergence [NeurIPS, 2021]
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Cross-Barcode(P,Q)

||Cross-Barcode(P, Q)||B is bounded from above by the Hausdorff 
distance between P and Q, where || . ||B is the bottleneck distance

MTop-Div(P, Q) by definition equals the sum of lengths of segments in 
Cross-Barcode1(P, Q)
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Mode dropping detection

Gen. Model G. SCORE MTop-Div
WGAN-GP 1.083 0.562
orig. GAN 1.087 0.081
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VS

Geometry Score = 0.0 
MTop-Div = 6154.0 

‘5’s vs. flipped ‘5’s
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FID vs. MTop-Div for StyleGAN, StyleGAN2 on FFHQ

MTop-Div is monotonically 
increasing in good correlation 
with FID
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Conclusions
• Machine Learning is about Shape of Data

• TDA-based methods for feature generation and rock properties 
assessment

• New MTop-Div divergence, compared against 6 established evaluation 
methods: FID, discriminative score, MMD, JSD, 1-coverage, and 
Geometry score. MTop-Div is able to capture subtle differences in data 
geometry

• We overcame the known TDA scalability issues and in particular have 
carried out the MTop-Div calculations on most recent datasets such as 
FFHQ, with dimensionality d~107
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Experiments. 3D GAN.

Training process of GAN applied to 3D 
shapes. Normalized quality measures 
MMD, JSD, 1-Coverage, MTop-Div vs. 
epoch. Lower is better.
MTop-Div is more sensitive than standard 
quality measures.

PCA projection of real objects (red) and 
generated objects (green). Vertical red 
line (epoch 50) depicts the moment, when 
the manifold of generated objects 
“explodes” and becomes much more 
diverse. 49



Experiments. TimeGAN.

Training dynamics of TimeGAN applied 
to market stock data. Discriminative 
score vs. epoch, MTop-Div vs. epoch. 
Lower is better. 
MTop-Div agrees with discriminative 
score.

PCA projection of real time-series (red) 
and generated time-series (green). 
Vertical red line (epoch 2000) depicts the 
moment when manifolds of real and 
generated objects become close. 50



Conclusions

1. We introduced a new tool: Cross-Barcode(P, Q). For a pair of point clouds P 
and Q, the Cross-Barcode(P, Q) records the differences in multiscale 
topology between two manifolds approximated by the point clouds;

2. We proposed a new measure for comparing two data manifolds 
approximated by point clouds: Manifold Topology Divergence (MTop-Div); 

3. We applied the MTop-Div to evaluate performance of GANs in various 
domains: 2D images, 3D shapes, time-series. We show that the MTop-Div
correlates well with domain-specific measures and can be used for model 
selection. Also it provides insights about evolution of generated data 
manifold during training;

51


