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Abstract. Reservoir modelling workflows are subject to large uncertainties on 
every step starting from interpretation of exploration data, coming up with a res-
ervoir modelling concept, describing reservoir characteristics and property dis-
tribution, integration of dynamic data and model calibration and update as new 
data become available. 
Modern development of AI tech opens outstanding opportunities to handle the 
above generic tasks with the methods designed to handle diverse and noisy data. 
AI can discover patterns in data, describe complex geological patterns with de-
pendencies learned from data, adapt models to data and search for a range of 
possible optimal development options subject to uncertainty. Effective AI appli-
cation to reservoir modelling workflows relies on the ability to ensure interpret-
ability of the machine learning model outcomes. This can be achieved by embed-
ding the domain context into the AI model structure, so the data are no longer 
treated as merely digital values but the variables with physical meaning and in-
terpretation in the subsurface context.  
In this overview demonstrates a few examples of how AI tech can help elicit and 
describe uncertainty in a geologically consistent way to ensure realism of geo-
logical interpretations and geomodel outcomes. AI applications will cover sev-
eral steps of reservoir modelling workflow including: 
1) AI seismic segmentation and geobody interpretation with unsupervised learn-
ing [1]. 
2) Constrain geological conceptual modelling with learning from outcrops [2]. 
3) Populate facies in meandering fluvial reservoir models based on learning from 
depositional process modelling with generative adversarial networks (GANs) [3]. 
4) Dynamic and static data integration with variational autoencoders and uncer-
tainty representation via latent space to predict reservoir dynamics [4]. 
The work will demonstrate how to gain better understanding and representation 
of associated geological uncertainty when geological domain knowledge is em-
bedded into the AI algorithms’ structure. 
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1 Introduction 

Uncertainty quantification remains an integral component of subsurface studies and ac-
curate uncertainty identification, description, prediction and management become a key 
to the successful resource development.  Subsurface uncertainty is associated with 
many geological aspects and physical characteristics of flow in porous media. 



2  V. Demyanov, Q. Corlay, A. Nathanail, C. Sun, G. Shishaev, D. Arnold 

Predictive modelling always relies on the incomplete data and understanding of the 
subsurface reservoir systems. Accurate characterization, propagation and inference of 
these uncertainties is the key for reliable prediction of subsurface system performance 
under development.   

Geostatistics has been seen a powerful tool to handle uncertainty in describing spa-
tial distribution of properties in geological systems. However, it is limited to  describe 
certain types of uncertainty better than others. For instance, interpretational and con-
ceptual uncertainty is significantly difficult to quantify, due to its subjective nature [5]. 
Geostatistics is capable of handling inherent uncertainty due to subscale heterogeneity 
to a certain extent, and uncertainty associated with geostatistical model parameters, e.g. 
multi-scale spatial correlation and distribution. A wide family of geostatistical algo-
rithms allows to account for model uncertainty only to a certain extent and is still lim-
ited to hand model inadequacy and missing unknowns. Geological data is subject to 
inherent measurement and interpretational uncertainty (e.g. petrophysics), and geosta-
tistics offers little help to account for input data uncertainty. Moreover, most of geosta-
tistical algorithms treat point data as hard data, which is seen as a large stretch in the 
model conditioning assuming a steep upscaling step.  

AI have found its way into geostatistical context a few decades ago and proved its 
efficiency as a complimentary and even alternative modelling technology to conven-
tional geostatistics [6,7]. Machine learning offers several important advantages: (i) it is 
not tied to fixed model assumptions (e.g., stationarity, Gaussianity); (ii) inherently 
adapts to data without enforcing “hard” conditioning (e.g., kriging); (iii) offers certain 
flexibility to control the model complexity and predictive power in a data driven way. 
Machine learning is used nowadays in a wide range of subsurface modelling applica-
tions: seismic processing, interpretation and inversion; petrophysics, spatial geological 
property distribution and flow modelling, data mining of many reservoir attributes, etc. 
One of the common drawbacks of purely data driven approaches remain the lack of 
interpretability. It remains at the forefront of active research and many ideas have been 
developed to empower AI with interpretable physics driven/hybrid element. 

Generic subsurface modelling tasks can be represented by four consequent steps:  
(i) Discover patterns in geological and reservoir data subject to uncertainty; 
(ii) Describe variability and heterogeneity in subsurface models; 
(iii) Predict dynamic outcomes of subsurface resources development; 
(iv) Decide on resource development with confidence under uncertainty. 
 
AI is capable of tackling each of the above steps and, therefore, extends the capabil-

ity of geostatistics.   
This work presents a selective overview of subsurface modelling workflows associ-

ated with some of the above tasks and feature a common focus on gaining interpreta-
bility of AI applications in subsurface modelling. This overview will briefly describe 
the following geological modelling workflows developed in a number of recent PhD 
theses [1-4] at Heriot-Watt University: 

1) AI seismic interpretation with detection of geobodies by unsupervised segmen-
tation [1] – (i) discover patterns in data; 
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2) Gaining conceptual model understanding through learning from outcrop pattern 
recognition [2] – (i) discover patterns in data; 

3) 3D reconstruction of facies spatial distribution with generative learning [3] – 
(ii) describe spatial variability; 

4) Match geological model to dynamic data to predict reservoir response with 
Graph Variational Auto-encoders [4]  – (iii) Predict reservoir dynamics. 

2 AI seismic interpretation  

Fast screening of target geobodies from seismic is essential to identify the range of 
plausible geological interpretations, which is usually very expert time consuming and 
subjective. A proposed seismic interpretation workflow is aimed to segment geobodies 
through density based clustering of the point cloud seismic, which decodes seismic in-
formation based on extrema extracted from seismic traces [1]. Point cloud representa-
tion reduces the seismic cube with a factor of two. Further segmentation with Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) identifies connected 
segments and leads to the further reduction in the model description to the finite set of 
objects (103) [8]. The second stage of the workflow (see IV in Fig. 1) aims to charac-
terise the discovered objects as particular geological shape according to the target con-
cept (e.g. a fan, or a channel, or an intrusive sill). Given a small number of manually 
interpreted labelled data (identified geobodies) conventional supervised learning ap-
proaches are not feasible. Therefore, the search for the closest similar shapes among 
the found segments is conducted in a feature space using binary hashing approximate 
nearest neighbour method. The high dimensional feature space is constructed using ge-
ometric features extracted from the segmented shapes: seismic amplitude metric 
(Zeboudj’s disparity), aspect ratio, contour ratio.  

 
Fig. 1. AI seismic interpretation workflow for geobody segmentation and object characteriza-

tion according to seismic amplitude and shape feature similarity. 

Uncertainty in seismic segmentation is handled by the tuneable DBSCAN parame-
ters (epsilon-neighbourhood and the minimum number of points in a cluster). The 



4  V. Demyanov, Q. Corlay, A. Nathanail, C. Sun, G. Shishaev, D. Arnold 

variability between the obtained segmentations is indexed with a clustering noise metric 
ratio to achieve the balance between over- and under-segmentation. 

Figure 2 demonstrates the output of the interpreted turbidite fans in North Falkland 
Basin and compares with those interpreted manually by the BGS (Dodd, 2023). Ten 
potential fans are located in the Eastern Graben, with sediment inputs mainly coming 
from the eastern margin (objects 5 to 14, Fig. 2b)), and four potential fans are located 
in the North of the Western Graben (objects 1 to 4), with sediment inputs either from 
the east (intragraben high - Orca Ridge) or the western margin. By comparing these 
potential fans with the fan map drawn up by Dodd et al. [9] (Fig. 2a), we can identify 
with varying degrees of confidence five of the seven interpreted fans: Rhea (object 5 in 
figure 5.8(a)), Sea Lion North (object 9), Sea Lion (object 10), Casper (object 11) and 
Zebedee and Beverley (northern part of object 13). 

 
 

a)  b)  
Fig. 2. Position of the main fans interpreted in the North Falkland Basin used as 

ground-truth detection (from [9]) (a); Results of the 100 closest objects to the Sea 
Lion fan analysis of the potential fans observed (b). 

 
Seismic segmentation through clustering is performed in time domain, hence all the 

object sizes and shapes are not in measured metric distance. Time-depth conversion can 
be performed with conventional seismic inversion (SI) workflows. Segmented seismic 
objects can inform SI workflows as an additional conditioning constraints and help 
propagated interpretational uncertainty into SI. 

3 Learning from outcrop pattern recognition  

Conceptual uncertainty is one of the most difficult to describe and quantify due its sub-
jective nature. Conceptual depositional interpretation is usually based on sparce frag-
mental evidence collated with the geological knowledge and understanding based on 
past experience elicited from analogues. Outcrop information is the key source of evi-
dence of plausible combination of depositional features that constitute combined evi-
dence to justify one or another geological interpretation. Therefore, there is an oppor-
tunity to use AI pattern recognition for rapid screening of large banks of available 
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outcrops to solicit geological evidence and attribute them to sparce in situ data from the 
target case. Interpretation based on the relevant outcrop information can help to come 
up with multiple conceptual modelling scenarios to better capture conceptual uncer-
tainty. 

Pattern recognition with supervised deep learning is able to detect depositional struc-
tures and segment facies sequence from an outcrop [2]. The conceptual understanding 
of the facies sequences and the associated depositional structures is then attributed to 
associate with the sparce data from the target case to come up with multiple conceptual 
modelling scenarios (Fig. 3). 

 

 

Fig. 3. A figure caption is always placed below the illustration. Short captions are centered, 
while long ones are justified. The macro button chooses the correct format automatically. 

 
Fig. 4. Instance Segmentation predictions of sedimentary structures (sandstone, interbedded 

sands, conglomerates), including a mask, bounding box, label, and the associated probability of 
the prediction on a Deep Marine depositional environment. 

Deep convolution neural networks were used to detect sedimentary structures You 
only look once (YOLO) [16] and segment sedimentary structures You Only Look At 
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Coefficients (YOLACT) [17]. Presence of a certain sedimentary structure is detected 
within a bounding box in the outcrop image in the first instance. Then, the detected 
sedimentary instance is being segmented with contour shape and the associated proba-
bility. Figure 4 illustrates deep marine sedimentary structures segmented in the unseen 
part of an outcrop after training on the other part of the same outcrop. 

Subjectivity of depositional interpretation remains an issue in conventional expert 
modelling workflows as it relies on the expert experience and exposure to data [18]. 
Quantification of uncertainty of manual interpretation is challenging and often has to 
be done in Bayesian inverse way. AI is capable to learn form a much wider and more 
abundant amount of outcrop evidence. Correctly trained neural network provides an 
unbiased solution because it balances bias and complexity. The source of bias may still 
remain with the training data set if it is unbalanced or lacks certain types of examples. 
Therefore, it is essential to make sure the training/testing/validation data set are repre-
sentative of the relevant variation of depositional cases to avoid bias in AI interpreta-
tion. The annotations of the outcrop features for labelled data was done manually by 
multiple geologists  to avoid bias and mistakes. There is still room to enhance pattern 
recognition training with conceptual information to de-bias the training and make in-
ference more objective. An example can be found in the work that blends outcrop im-
ages with sketch-based interpretation to improve prediction quality [19]. Sketches con-
stitute unconditional expert interpretations and represent domain expert knowledge 
fused into CNN learning. 

Further mitigation of unrealistic pattern recognition outcomes can be addressed with 
referring to domain knowledge encapsulated in geological literature. Natural Languate 
Processing was used to scan heritage geologic records and existing publications for 
realistic combinations of the individual features lined to plausible depositional inter-
pretations [2]. Then, a neural network was trained with the individual features (ex-
tracted from the outcrops) and their plausible combinations from the literature to pro-
duce the list of plausible conceptual interpretations that match the outcrop evidence. 

4 3D facies reconstruction with generative learning (GAN) 

Modelling spatial distribution of facies is one of the key steps in geological modelling 
workflow. Facies distribution is subject to important uncertainties associated with 
facies interpretation, aspects of the depositional concept, facies shapes, proportions and 
connectivity. All the above can make a significant impact on further subsurface 
resource development. 

Geostatistics offers various algorithms to populate facies properties based on 2-point 
spatial correlation, training images or predefined object shapes [10]. These approaches 
vary in the level of geological realism and natural variability of the deposited facies 
patterns they can provide and the ability to honor the conditioning data. Geostatistical 
models may still lack geological realism vs the level that can be achieved by physics-
based process models. 

Generative deep learning is seen as a viable approach to model complex, non-sta-
tionary facies patterns. Deep learning is capable to learn and reproduce complex spatial 
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patterns and can be trained on the geologically realistic patterns from physics-based 
process models. This opens an opportunity to account for geological uncertainty asso-
ciated with the variation in the depositional process, e.g. avulsion, and also tackle the 
challenge of conditioning process models to point and soft data. Generative modelling 
can be also computationally less expensive than process modelling at field scale, espe-
cially for uncertainty quantification studies with ensembles of generated models. 

Generative Adversarial Networks (GANs) were used to learn complex 3D fluvial 
facies distributions from an ensemble of process model realization across variable avul-
sion low NTG scenarios. Low NTG cases are particularly challenging due to their im-
pact on connectivity. Variability in channel avulsion conditions (Nav) provide a range 
of channel shapes from sheet like (low avulsion) to  ribbon-like (high avulsion) that 
feature different connectivity. An open-access training data set (GAN River I) with a 
variable avulsion settings was generated using FLUMY process model [11]. 

Trained GAN was able to realistically reproduce complex fluvial patterns, facies 
shapes, sequences and connectivity. The bespoke newly developed FluvialGAN avoids 
many artifacts related to unrealistic geological features and abnormal facies transition 
[12].  

 

 
Fig. 5. Comparison of meandering patterns when changing channel avulsion rate 𝑁𝑁𝑁𝑁𝑁𝑁 from 1 to 

5 in the standard FluvialGAN_3DR reconstruction process: with high avulsion rate 𝑁𝑁𝑁𝑁𝑁𝑁 = 1 
during reconstruction, with low avulsion 𝑁𝑁𝑁𝑁𝑁𝑁 =5 (b). 

FluvialGAN_3DR trains on a sequence of 2D facies patterns and then reconstructs 
a 3D depositional sequence from bottom to top mimicking a natural depositional pro-
cess [13]. This is also computationally more efficient than training on 3D patterns. Flu-
vialGAN_3DR trained on 2D can then reconstruct fluvial formations of arbitrary 
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thickness not constrained by the 3D training data thickness. Figure 5 illustrates two 3D 
facies successions generated by the FluvialGAN_3DR for high and low avulsion sce-
narios. The results confirm that the depositional process can follow the given deposi-
tional regime throughout the formation sequence thickness. 

Figure 6a illustrates the comparison of S connectivity curves as functions of the 
channel sand proportion between GAN reconstruction ensemble and the corresponding 
process model realizations (FLUMY) [3]. The S-curve percolation threshold around 
20% of the sand proportion suggests a comparable connectivity level, while the cascade 
zone around the threshold covers a similar spread of variability across the ensembles. 
Comparable connectivity spreads in the UMAP projection (Fig. 6b) also illustrate a 
good agreement between GAN modelling and the process modelling outcomes. 

The proposed GAN approach for facies distribution modelling can be compared to 
geostatistical MPS approach. Though both are able to produce similar types of solutions 
their algorithmic nature is quite different. MPS is does not generate patterns in as a 
result of learning from data, it is rather a pattern completion algorithm based on prob-
abilistic sampling from a conditional distribution based on a single training image. This 
brings pros and cons. MPS works very well with not very complex multi-facie/multi-
variate patters and is straightforward to condition to hard and soft data. However, MPS 
often suffers from artifacts, especially locally, and may struggle to represent complex 
non-linear depositional trends and uncertainty in non-stationary behaviour. Fluvial 
GAN is a fully generative algorithms that learns from data and generates new patters 
not seen in the data. It has demonstrated how to avoid geologically inconsistent artifacts 
and embed implicit conditioning to complex non-linear trends learned from deposi-
tional process modelling. GAN RIVER I data set [11] offers a challenging benchmark 
case of highly realistic multi-facie example to compare different modelling algorithms.  

 
Fig. 6. The sand connectivity against proportion plot (a) and UMAP visualisation (b) of 

FLUMY realisations against Fluvial GANs’ realisations. Blue points are FLUMY realisations. 
Red points are Fluvial GANs’ realisations. 
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5 History matching with Graph Variational Autoencoders 

Calibration of static geological models to the dynamic data is an integral part of the 
reservoir prediction uncertainty quantification workflows. This is essentially an inverse 
problem that implies multiple solutions and usually requires a comprehensive compu-
tationally intensive iterative optimisation algorithm to achieve the solution. Dynamic 
data conditioning implies iterative static model property update, which may result in 
geologically unrealistic solution if the updates are not constrained with geological con-
sistency. This proved to be difficult to achieve with geostatistical modelling.  

Generative learning is one of the AI approaches recently been applied to solve in-
verse problems in reservoir model update and history matching [14]. This particular 
work demonstrates a novel flavour of variational autoencoders – Graph Wasserstein 
Auto-encoder (GWAE) adapted for automated history matching workflow [4]. Graph 
autoencoders are not restricted to lattice grids and are able to better capture structural 
discontinuities of geological models, which has been always a limitation of geostatisti-
cal model representation. Another advantage of GWAE is that it is inherently multivar-
iate, i.e. represents non-linear relations between corelated properties such as porosity 
and permeability.  

GWAE is trained directly on the continuous property data by skipping the explicit 
facies modelling step, unlike conventional geostatistical modelling workflows. Train-
ing of the encoder decoder pair commences on the ensemble of reservoir model grids 
populated with continuous porous properties (porosity and permeability) using geosta-
tistical modelling workflow. Designing the training ensemble is essential to ensure its 
diversity to cover plausible geological model uncertainty range that is represented by a 
low dimensional latent space. GWAE training implies control of geological realism via 
interpretative hidden space, which forms a low dimensional representation of the geo-
logically plausible model configurations. Dynamic flow response and production data 
are not used in training and therefore no prior CPU-costly reservoir flow simulations 
are required. However, the optimisation loop is run over the designed latent space in 
the search for the models that that would match production history. This inverse loop 
requires computing flow simulation model response.  Navigation on the GWAE latent 
space between the encoder and decoder provides efficient model update by generating 
model realisations that better agree with the dynamic data via optimisation iterations. 
Finally, GWAE model is conditioned to both static and dynamic data in the same loop, 
which is gains computational efficiency, balance the model fit to static and dynamic, 
without assuming the hard point data and 100% certain, which they are not. 

GWAE was applied to history matching of the benchmark Brugge field [15]. Figure 
7  illustrates the top fluvial layer porosity distribution generated by GWAE compared 
with the reference object/SGS model. They show good agreement and a normal distri-
bution of their differences. Further agreement between the two models is illustrate with 
the variogram comparison in Figure 8a and the reproduction of the petrophysical de-
pendency in Figure 8b. 
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Fig. 7. GWAE reconstruction of the porosity field (●) for the fluvial layer of Brugge model com-
pared with the refence object model (●) and the corresponding difference (●) and its statistics.  

a)  b)  

Fig. 8. Comparison of the variograms for the GWAE porosity model and the reference for the 
fluvial layer of Brugge field from Fig 7 vs the variogram of difference (a). Reproduction of po-

rosity-permeability correlation by GWAE model vs the reference (b). 

Figure 9 illustrates the obtained individual well history matches vs the initial prior 
ensemble of models. Static well data are also in good agreement though not hard 100% 
conditioned but allow some deviation to account for point data uncertainty at the wells. 

 

 
Fig. 9. GWAE AHM results for the selected individual wells vs the observed production. 
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6  Conclusions 

This work provides a selective overview of how various AI methods can help tackle 
difficult problems across the entire subsurface modelling workflow. Learning from data 
and their associated uncertainties enables to account for a more diverse range of un-
knowns than geostatistics in a less rigid way. AI offer a great selection of algorithms 
that can learn realistic natural dependencies from data in a supervised or unsupervised 
way to gain geological realism and interpretability.  

This overview follows key conventional steps of subsurface modelling and demon-
strates how geological uncertainty can be handled in a data driven way at each step: 
seismic interpretation, conceptual modelling, facies modelling and dynamic. The over-
view includes examples of: (i) how AI for seismic interpretation learns interpretable 
seismic features in an unsupervised way; (ii) how supervised deep learning learns and 
collates depositional contextual information from outcrop data to inform conceptual 
models and account for interpretational uncertainty; (iii) GANs are capable to learn 
complex facies spatial distribution pattern from physics based simulations  and generate 
realistic 3D sequences with respect to natural depositional uncertainty factors (channel 
avulsion); (iv) Graph variational auto-encoder framework for inverse modelling suc-
cessfully solved history matching problems through reliable model update via the con-
structed hidden space between encoder and decoder. GWAE navigates the hidden space 
to generate model updates ensuring geological realism and accurately balances between 
static and dynamic data match. 

AI application requires tailoring standard techniques to account for the geological 
domain context specifics. This requires a deep understanding of geological context and 
domain knowledge to be able to embed it into the structure of machine learning algo-
rithms. Success in AI applications in subsurface reservoir modelling is achieved by 
gaining interpretability of the machine learning outcomes and control in how well their 
performance is justified by reproducible geologically realistic aspects.  
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